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1 SUMMARY

OS kernels form the backbone of all system software. They can have the greatest impact on
the resilience, extensibility, and security of today’s computing hosts. Recent effort on seL.4 has
demonstrated the feasibility of building large scale formal proofs of functional correctness for a
general-purpose microkernel, but the cost of such verification is still prohibitive, and it is unclear
how to use such a verified kernel to reason about user-level programs and other kernel extensions.

Under this DARPA CRASH effort (FA8750-10-2-0254), the PI (Principal Investigator) and his
team has developed a clean-slate CertiKOS hypervisor kernel that runs on Intel and AMD multicore
platforms with hardware virtualization and can boot Linux and ROS applications in its multiple

virtual machines. A version of CertiKOS is now deployed on all the ground vehicle platforms
(LandShark UGV and American Built Car) in the DARPA HACMS program.

The PI and his team have also developed a new set of certified programming methodologies and
tools that support programming and composing certified abstraction layers (in C or assembly) and
can verify contextual safety, correctness, liveness, and security properties in one unified setting.

Using these new languages and tools, they developed a new compositional architecture for
building certified OS kernels. Because the very purpose of an OS kernel is to build layers of
abstraction over hardware resources, they insisted on uncovering and specifying these layers
formally, and then verifying each kernel module at its proper abstraction level. To support reasoning
about user-level programs and linking with other certified kernel extensions, they proved a strong
contextual refinement property for every kernel function, which states that the implementation of
each such function will behave like its specification under any kernel/user (or host/guest) context. To
demonstrate the effectiveness of this new approach, they have successfully specified a uniprocessor
variant of their full CertiKOS kernel and verified its (contextual) functional correctness property
in the Coq proof assistant. They showed how to extend their base kernel with new features such
as virtualization and ring-0 processes and how to quickly adapt existing verified layers to build
new certified kernels for different domains. Their certified hypervisor OS kernel is written in 5500
lines of C and x86 assembly, and can successfully boot a version of Linux as a guest. The entire
specification and proof effort took less than 1.5 person years.

They have also developed new semantics and logics for supporting Declarative Decentralized
Information Flow Control (DIFC) with declassification. They proposed a new framework which
advocate the use of an instrumented semantics for reasoning and the erasure semantics for execution.
Their new program logic can be used tor verify security properties for low-level C or assembly
programs. They showed that they can prove a new form of non-interference properties even in the
presence of declassification. This technology is now being ported into their CertiKOS kernels.

They have also developed new ground-breaking certified resource analysis tools and new logics
for verifying safety and liveness of fine-grained shared memory concurrent programs.



On the formal methods side, they have also made the first comprehensive study that aims
to address the architecture deficiencies in all of today’s proof assistants. They proposed a new
proof-assistant architecture that uses extensible conversion rules and static proof expressions to
support effective and principled proof development. They developed the design, the complete meta
theory, and a full compiler of a novel programming language called VeriML which realizes the new
architecture and also offers a unified platform for coding all kinds of computation on logical terms.



2 INTRODUCTION

Operating System (OS) kernels and hypervisors form the backbone of every safety-critical software
system in the world. Hence it is highly desirable to formally verify the correctness of these
programs [35]. Recent work on selL4 [19,20] has shown that it is feasible to formally prove the
functional correctness property of a general-purpose microkernel, but the cost of such verification is
still quite prohibitive. It took the sel.4 team more than 11 person years (effort for tool development
excluded) to verify 7500 lines of sequential C code, yet the resulting kernel still contains 1200 lines
of additional C code and 600 lines of assembly code that are not verified. Worse still, even after all
these efforts, the current verified seL.4 kernel cannot be used to reason about user-level programs as
it does not verify important features such as virtual-memory page faults and address translation.

What makes the verification of OS kernels so challenging?

First, OS kernels are complex artifacts; they contain many interdependent components that are
difficult to untangle. Their invariants can involve machine level details (e.g., how the virtual memory
hardware works) but can also cut across multiple abstraction boundaries (e.g., different views of an
address space under kernel/user or host/guest modes). Several researchers [1,41] observed that even
writing down a good and easy-to-maintain formal specification alone is already a major roadblock
for any such verification effort.

Second, OS kernels are often written in C, which only supports limited forms of abstraction.
Verification of C programs is especially hard if they manipulate low-level data structures (e.g.,
thread queues, allocation tables). The seL4 effort used an intermediate executable specification
(derived from a Haskell prototype) to hide some messy C specifics, but this alone is not enough for
enforcing abstraction among different kernel components; sel.4 had to introduce capabilities which
add significant implementation complexities to the kernel.

Third, OS kernels are developed for managing and multiplexing hardware, so it is important to
have a machine model that can describe hardware details. The C language is too high level for this
purpose. For example, while most kernel code can be written in C, many key kernel concepts (e.g.,
context switches, address translation, page fault handling) can only be given accurate semantics
at the assembly level. Consequently, we need a formal assembly model to define many kernel
behaviors, but we also want to verify most kernel code at a much higher abstraction level.

Fourth, OS kernel verification would not scale if it does not support extensibility. One advantage
of a verified kernel is the existence of formal specifications for all of its components. In theory,
this would allow us to add certified kernel plug-ins [36] as long as they do not violate any existing
kernel invariants. In practice, however, if we are unable to decompose kernel invariants into small
independent pieces, even modifying an existing (or adding a new) verified component may force us
to rewrite the proofs for the entire kernel.

Under this DARPA CRASH (Clean-Slate Design of Resilient, Adaptive, Secure Hosts) effort



(FA8750-10-2-0254), the PI and his team at Yale University have developed a novel compositional
approach that successfully tackles all of the above challenges in building certified OS kernels. They
believe that, to make verification scale and to provide strong support to extensibility, they must first
have a compositional specification that can untangle all the kernel interdependencies. Because the
very purpose of an OS kernel is to build layers of abstraction over bare machines, they insist on
meticulously uncovering and specifying these layers (done in the Coq proof assistant [40]), and
then verifying each kernel module at its proper abstraction level.

The functional correctness of an OS kernel (as done in selL4) is usually stated as a refinement
property. Roughly speaking, if M stands for the C/assembly implementation of a kernel, M 4 for
its abstract functional specification, and [[-]] for each’s corresponding state machine, then M refines
M 4 if there exists a forward simulation [28] from [M¢]| to [[M 4] (denoted as [Mc] = [Ma]).
Through such refinement, Gerwin et al [19,30, 33, 34] claimed that many properties established for
M 4 (e.g., confidentiality [30] when M 4 is deterministic) can be transferred to M.

This claim, unfortunately, fails to hold in the context of any interesting user-level programs.
If P stands for a collection of user-level processes and i for a linking operator, then from
[Mc] = [[M4] alone, we cannot derive [ Mc < P]| © [[M 4> PJ. This is because the semantics
of running P on top of M, (where virtual memory hardware is hidden) is different from that of
running P on top of My (where page faults and address translation do come into play). Daum et
al [7] partially closed the gap by extending the original refinement proof to also track memory
permissions, but they still did not deal with page faults in their model of user transitions.

Under this new DARPA CRASH effort, the PI and his team instead prove the strong contextual
refinement property for all kernel modules directly: they show that for any kernel/user or host/guest
context code P, [ M P]| £ [ M4 P]| always holds. This guarantees that they cannot overlook
any subtle difference between machines at different abstraction levels.

More specifically, they developed a new extensible architecture (called CertiKOS) for building
certified OS kernels. CertiKOS uses contextual refinement as the unifying formalism for composing
kernel and user components at different abstraction levels. Each abstraction layer is defined as an
assembly-level machine extended with a particular set of abstract states and primitives. However,
most of their kernel programs are written in a variant of C (called ClightX) [14], verified at the
source level, and compiled and linked together using a modified version [14] of the CompCert
verified compiler [21,22]. CertiKOS is the first architecture that can truly transfer global properties
proved for user-level programs (at the kernel specification level) down to the concrete assembly
machine level.

Using CertiKOS, they have developed a fully certified mCertiKOS kernel in Coq. Unlike
seLL4, they decompose the specification of mCertiKOS into 33 logical abstraction layers, and
turn an otherwise prohibitive verification task into many simple and easily automatable sub-tasks.
The resulting kernel is a certified assembly implementation that still enjoys a high degree of
compositionality. Their layered specification shows that interdependent low-level kernel modules



can indeed be untangled and given clear formal semantics.

Using mCertiKOS as the base, we have also built three additional certified kernels: mCertiKOS-
hyp extends mCertiKOS with virtualization support to form a hypervisor kernel; mCertiKOS-rz
extends mCertiKOS-hyp with “ring 0” processes (they are “certifiably safe” application programs
that can run safely inside the kernel address space, similar to SIPs in Singularity [17]); mCertiKOS-
emb removes virtual memory and virtualization support from mCertiKOS-rz so that it only supports
“ring 0” processes.

They have done a detailed evaluation of their certified development effort, including kernel
performance, the cost of layer design and proof development, and the cost of building new extended
(or adapted) kernels. All of their certified kernels are practical and can run on stock x86 hardware.
Their certified hypervisor kernel (mCertiKOS-hyp) consists of 5500 lines of C and x86 assembly,
and can successfully boot a version of Linux as a guest. The entire specification and proof effort
took less than 1.5 person years.

Finally, in addition to developing new cutting-edge technologies for building certified OS
kernels, the PI and his team have also made significant breakthroughs on the following problems:

e They have developed a clean-slate hypervisor kernel that runs on Intel and AMD multicore
platforms with hardware virtualization and can boot Linux and ROS (Robot Operating System)
applications in its multiple virtual machines. This hypervisor kernel is now deployed on
all the ground vehicle platforms (LandShark UGV and American Built Car) in the DARPA
HACMS (High-Assurance Cyber Military Systems) program.

e They have developed a new set of certified programming methodologies and tools [14] that
support programming and composing certified abstraction layers (in C or assembly) and can
verify contextual safety, correctness, liveness, and security properties in one unified setting.

e They have developed new semantics and logics [6] for supporting Declarative Decentralized
Information Flow Control (DIFC) with declassification. They proposed a new framework
which advocate the use of an instrumented semantics for reasoning and the erasure semantics
for execution. Their new program logic can be used tor verify security properties for low-level
C or assembly programs. They showed that they can prove a new form of non-interference
properties even in the presence of declassification. This technology is now being ported into
their CertiKOS kernels.

e They have developed new ground-breaking certified resource analysis tools [3,4] and new
logics [25,26] for verifying safety and liveness of fine-grained shared memory concurrent
programs.

e They have made the first comprehensive study [39] that aims to address the architecture
deficiencies in all of today’s proof assistants. They proposed a new proof-assistant architecture
that uses extensible conversion rules and static proof expressions to support effective and
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principled proof development. They developed the design, the complete meta theory, and a
full compiler of a novel programming language called VeriML [37-39] which realizes the
new architecture and also offers a unified platform for coding all kinds of computation on
logical terms.



3 METHODS, ASSUMPTIONS, AND PROCEDURES

The ultimate goal of research on certified OS kernels is not just to verify the functional correctness
of a particular kernel, but rather to find the best OS design and development methodologies that
can be used to build provably reliable, secure, and efficient computer systems in a cost-effective
way. The PI and his team at Yale enumerated the following important dimensions of concerns and
evaluation metrics which they have used so far to guide their work toward realizing this goal:

e Support for new kernel design. Traditional OS kernels use the hardware-enforced “red line”
to define a single system call API (Application Programming Interface). A certified OS kernel
opens up the design space significantly as it can support multiple certified kernel APIs at
different abstraction levels. It is important to support kernel extensions [2, 10] and ring-0
processes [17] so we can experiment and find the best trade-offs.

e Kernel performance. Verification should not impose significant overhead on kernel perfor-
mance. Of course, different kernel designs may imply different performance priorities. An
L4-like microkernel [27] would sacrifice portability for faster inter-process communication
(IPC) while a Singularity-like kernel [17] would focus on efficient support for type-safe ring-0
processes.

e Verification of global properties. A certified kernel is much less interesting if it cannot be
used to prove global properties of the complete system built on top of the kernel. Such global
properties include not only safety, liveness, and security properties of user-level processes
and virtual machines, but also resource usage and availability properties (e.g., to counter
denial-of-service attacks).

¢ Quality of kernel specification. A good kernel specification should capture precisely those
contextually observable behaviors in the kernel implementation [14]. It must support trans-
ferring global properties proved at a high abstraction level down to any lower abstraction
level.

e Cost of development and maintenance. Compositionality is the key to minimize such cost.
If the machine model is stable, verification of each kernel module should only need to be done
once (to show that it implements its deep functional specification [14]). Global properties
should be derived from the kernel specification alone.

e Quality of formal proofs. They use the term certified kernels rather than verified kernels to
emphasize the importance of third-party machine-checkable proof certificates [35]. Hand-
written paper proofs are error-prone [18]. Program verification without machine-checkable
proofs has been subject to significant controversy [8].
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Figure 1: Certified OS kernels: what to prove?

3.1 Overview of the CertiKOS Approach

Their new CertiKOS architecture aims to address all of the above concerns and also tackle all
four challenges described in Sec. 2. The CertiKOS architecture leverages the new languages and
tools [14] which the PI and his team have developed recently for building certified abstraction layers
with deep specifications.

A certified layer is a new language-based module construct that consists of a triple (L1, M, Lo)
plus a mechanized proof object showing that the layer implementation M, built on top of the
interface L, (the underlay), is a contextual refinement of the desirable interface L, above (the
overlay). A deep specification (e.g., L2) of a module (e.g., M) captures everything contextually
observable about running the module over its underlay (e.g., L;). Once they have built a certified
layer M with a deep specification Lo, there is no need to ever look at M again, and any property
about M can be proved using Ly alone. Of course, if the semantics of the underlying abstract
machine (for M) changes, the deep specification for A/ may also have to change.

Under CertiKOS, building a new certified kernel (or experimenting a new design) is just a
matter of composing a collection of certified layers, developed in a variant of C (called ClightX) or
assembly. The PI and his team [14] have developed a powerful Coq library for supporting horizontal
and vertical composition of certified layers. They have also built a certified compiler (called
CompCertX) that can compile certified ClightX layers into certified assembly layers. CertiKOS
can thus enjoy the full programming power of an ANSI C variant and also the assembly language
to certify any efficient routines required by low-level kernel programming. The layer mechanism
allows us to certify most kernel components at higher abstraction levels, even though they all
eventually get mapped (or compiled) down to an assembly machine.

In Fig. 1, they use x86 to denote an assembly machine and [[-]l.s¢ for its whole-machine
semantics. Suppose they load such a machine with the mCertiKOS kernel K (in assembly) and
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Figure 2: Overview of the CertiKOS architecture

user-level assembly code P; then proving any global property of such a complete system amounts
to reasoning about the semantic object [[ /X > P]ss-

Reasoning at such a low level is difficult, so they formalize a new mCertiKOS machine that
extends the x86 machine with the deep specification of K. They use [[-]lmcertikos to denote its
whole-machine semantics. The contextual refinement property about the mCertiKOS kernel can be
stated as VP, [[K > Plxs6 = [[P]lmcertikos- Hence any global property proved about [ Pl mcertikos
can be transferred to [[ K > PJ|,s6-

In CertiKOS, they also use contextual refinement to support fine-grained layer decomposition
and linking. In Fig. 2, to build a certified kernel K, they decompose it into multiple kernel modules
Ky, ..., K, each sitting at its respective underlay (L, ..., L,,_1). Each such module (K;) implements
the primitives in its overlay (i.e., ;) but it can only call the primitives in its underlay (Z;_1). Using
vertical composition [14], from the contextual refinement VP, [ K, P]);_; = [ P]); for each layer
(they use [[-]|; to denote the semantics of the L, machine), they can deduce VP, [ K < Pl = [[K7
Ky xK, <Pl [Ky-- <K, =Py = [K,xPl,_1 = [P],. If they instantiate L, and
L,, with the x86 and mCertiKOS layers, they get precisely the contextual refinement property of
the mCertiKOS kernel. They can also compose intermediate layers in the same way—this makes it
much easier to modify existing (or add new) certified kernel modules.



What have they proved? Using CertiKOS, they have successfully built multiple certified OS
kernels. For each such kernel, they have always constructed its deep specification and proved its
contextual functional correctness property, so all global properties proved at the specification level
can be transferred down to the lowest assembly machine.

From the functional correctness property, they immediately derive that all system calls and traps
will always run safely and also terminate; and there will be no code injection attacks, no buffer
overflows, no null pointer access, no integer overflow, etc. They also proved that there is no stack
overflow or memory exhaustion in the kernel using recent techniques developed also by the PI's
team et al [3,4]. They have also proved an isolation property between the virtual address spaces of
user-level processes. All of these properties were proved using the abstract specification provided at
the top layer, and then transferred to the lowest assembly machine via contextual refinement.

Assumptions and limitations Outside their certified mCertiKOS kernel, there are only 163 lines
of C (for loading ELF binaries) and 38 lines of assembly code (for handling traps) that are not
verified.

The mCertiKOS kernel also relies on a bootloader, whose verification is left for future work.
The bottom-most x86 layer of our certified kernels is called Prelnit, which initializes the drivers,
e.g., serial, disk, console, efc. Device drivers are not verified because our current machine semantics
lacks device models for expressing the corresponding semantics.

Their assembly-level machines do not cover the full x86 instruction sets, so their contextual
correctness results only apply to programs in this subset. However, additional instructions and
features can be easily added if they have simple or no interaction with our kernel.

The CompCert assembler for converting assembly into machine code is also not verified. They
assume the correctness of the Coq proof checker and its code extraction mechanism.

Their current certified kernels assume a runtime environment consisting of a single processor,
but extending it to support multicore concurrency is already under way. Their choice of using
contextual refinement to compose layers is motivated partly by its close connection [13,26] with the
work on concurrent objects [15, 16].

Like most existing verified kernel efforts, they assume that interrupts are only enabled in
user or guest mode. The challenges in handling interrupts and preemption are similar to those
for concurrency [11, 12]. They believe that similar approaches can be readily supported in their
CertiKOS framework.

Comparison with sel.4 The seL.4 team [19] focused on verifying a particular microkernel. The
designers of the L4-family kernels [9,27] advocated the minimality principle: a concept is tolerated
inside the microkernel only if moving it outside the kernel would prevent the implementation
of the system’s required functionality. This is a reasonable principle but its interpretation of the
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“kernel-user” boundary (as the hardware-enforced “red-line”) is quite narrow. The PI and his team’s
new CertiKOS architecture advocates replacing the traditional “red line” with a large number of
certified abstraction layers enforced by formal specification and proofs; hardware mechanism (such
as address protection) is just one (quick) way of ensuring that a specific process will not violate the
invariants required by a particular kernel abstraction layer.

As mentioned in Sec. 2, the seL.4 team only proved the refinement property but not the con-
textual refinement property, so the global properties (e.g., security [30,34]) proved at the abstract
specification level cannot be transferred to the C-implementation level. The root cause of this
problem is their rather simplistic C-level state machine which they used to verify their 7500 lines of
C code. This machine is too high level to model several key OS features (e.g, kernel initialization,
context switches, address translation, and page-fault handling). Indeed, these features happen to
coincide with the unverified C and assembly code in their kernel.

Sewell et al. [33] used translation validation to build a refinement proof between the semantics
of the verified C source code and the corresponding binary (compiled by GCC). This proof is not as
high quality as the rest of the seL4 effort because it was not done in a proof assistant (thus it has no
machine-checkable proof) and the translation validator itself still has not been verified.

Even with this work by Sewell et al. [33], the previously unverified C code (1200 lines) and
assembly code (600 lines) in seL4 still remain unverified. These are actually quite major assumptions
for a verified kernel because they include the correctness of context switches, kernel initialization,
address translation, and linking between verified C and assembly; all of which were considered as
major challenge problems by many researchers working in this field [5,11,31,32,41].

Using CertiKOS, the PI and his team have successfully tackled all of these challenges: context
switches, kernel initialization, address translation, and page fault handling are all certified. All
kernel components (in C and assembly) are correctly linked together to form a complete system in
an assembly machine and all our proofs are machine-checkable in Coq.

Much of the implementation complexity of the seL.4 kernel lies on its support of capability-based
access control. Capabilities are important in seL.4 as they are used to prevent unwanted interference
between different kernel components. However, they significantly increase the complexity of the
seLL4 kernel. In contrast, the CertiKOS-family kernels the PI and his team have built so far rely on
the CompCert memory model [23] to enforce isolation and prove contextual refinement.

3.2 Methods and Procedures: Defining Abstraction Layers

Contextual refinement provides an elegant formalism for decomposing the verification of a complex
kernel into a large number of tractable tasks: the PI and his team define a series of logical abstraction
layers, which serve as increasingly higher-level specifications for an increasing portion of the
kernel code. They design these abstract layers in a way such that complex interdependent kernel
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components are untangled and converted into a well-organized kernel-object stack with clean
specification.

Their framework specifies an abstraction layer using five components: a collection of objects, a
memory model, an invariant which the memory and objects satisfy at any point of the execution, an
initialization flag, and an initialization primitive. These five components define a logical view of a
subset of the kernel code and extend our language with an abstract specification of that code. On
top of this logical view, more code is introduced and verified.

Layer objects The layer objects are logical abstractions of kernel modules. In Fig. 3, each layer
object provides a set of abstract states (which are abstractions of the module’s private memory) and
a set of primitives (which are abstractions of the module’s interface specified in terms of the abstract
states). Consecutive layers may reuse some of the same objects, introduce new layer objects by
verifying additional code, or hide some low-level objects which are used to implement new objects
but need not be exposed to higher layers. Hiding unnecessary objects facilitates invariant proofs
since they can often use stronger invariants at higher layers that would otherwise be violated by
low-level objects.

For example, thread queues are implemented as doubly-linked lists in mCertiKOS, and the
concrete implementations of the functions that manipulate queues (enqueue and dequeue) directly
manipulate these doubly-linked lists in memory. On the other hand, in our abstract queue layer
object, a queue is just a simple list of thread identifiers, and the enqueue and dequeue primitives
are specified directly over the abstract lists. The contextual refinement relation between the two
layers (one with concrete implementation and the other with the abstract layer object) ensures
that any kernel/user context code (e.g., the scheduler) running on top of the more abstract layer
retains an equivalent behavior when it is running on top of the layer with corresponding concrete
implementation.

As shown in Fig. 3, to establish the contextual refinement relation between concrete memory
and abstract state, they use CompCert memory permissions [24] at the higher layer to prevent the
context code from accessing the module’s private memory. Note that these permissions do not
correspond to a physical protection mechanism, but instead are entirely logical: they ensure that the
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higher-level abstract machine gets stuck whenever it executes code that directly accesses this private
memory. By proving our kernel is safe (it does not get stuck), they guarantee that this situation will
not happen.

Memory models OS kernels must manage limited physical memory and provide contiguous
address spaces for high-level kernel modules and user programs. Because much of the code assumes
that the memory management sets up the virtual address space properly, initialization has been
a sticking point in previous verification efforts [20,41], in which the virtual address space setup
is either not verified, or verified separately as an external lemma. They address this challenge by
making the memory model explicit in our abstraction layers.

Because they use CompCertX [14] along with its formalization of the semantics of C and
assembly, our notion of memory is based on the CompCert memory model [24]. CompCert employs
a unified model to encode different views of memory. The memory is split into a number of disjoint
blocks and a pointer is represented by a pair (b, 0), where b is a block identifier and o is an offset
within block b. Each offset within a block is associated with a permission specifying the memory
operations that can be performed at that location. A program which attempts to perform a prohibited
operation will get stuck. The compiler’s correctness theorem guarantees that the target program will
only get stuck if the source does; thus the compiler will never introduce invalid memory operations
into a correct program.

In CompCert, this unified memory model built around blocks and permissions is used to encode
different views of the memory. For instance, at the C level each variable is assigned its own memory
block, so that the semantics of CompCert C reflect the C standard by invalidating pointer arithmetic
across variable boundaries. On the other hand, in the emitted assembly code, a function’s local
variables are merged into a single “stack frame” memory block. CompCert’s simulation proof has
to keep track of the correspondence between these two views of the memory, but the fact that the
semantics of the source and target languages are expressed in terms of a unified memory framework
tremendously simplifies the compiler’s verification. At the assembly level, this model is still slightly
more abstract than the hardware, yet it is sophisticated enough that CompCert’s stack layout pass,
for instance, can be properly verified.

They follow a similar approach, and extend the semantics of CompCert assembly so that the
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CompCert memory model can be equipped with notions of page fault and address translation. A
distinguished block is used to represent the entire address space. The memory model of a layer L
specifies how memory loads and stores are carried out in terms of the system description at that level
of abstraction. The machine memory model, and those implemented by the physical and virtual
memory management components, organize memory in terms of various units (byte, page, address
space), and provide different addressing modes and protection mechanisms. Because our kernel
code is compiled using CompCertX, its own stack frames and static data have to be modeled as
independent blocks. However, as explained in Sec. 4, we prove that user programs can never access
the kernel portion of the address space. They also use an external tool [3] to prove that the stack
usage of our compiled kernel is bounded such that stack overflows cannot occur: the computed
bound is much less than the dedicated 4K bytes we use for kernel stacks.

Integrating the various views of the memory into our layered approach allows us to reason
about memory accesses in the same way that we reason about other kernel services: as long as the
low-level machine memory model, as configured by our kernel code, contextually refines a more
abstract memory model, any code we can write and reason about in terms of the latter can be shown
to have an equivalent behavior when run on top of the former. As shown in Fig. 4(a), the machine
memory model is an unstructured CompCert memory block, which is consistent with the hardware
view of the physical memory. Accesses to this memory block are modeled in a way that mirrors the
operation of the paging hardware. By contrast, in the top-level memory model (which we call the
abstract memory model), address translation cannot be disabled; memory accessors operate on the
basis of the high-level, abstract descriptions of address spaces rather than concrete page directories
and page tables stored in the memory itself (see Fig. 4(b)).

Layer invariant Each abstraction layer specifies a predicate on the memory and layer objects’
abstract states. This invariant is satisfied by the initial state and preserved by memory accessors and
the layer objects’ primitives. It therefore holds in all client contexts, at any point of execution.

In previous verification efforts, proving invariants has typically been challenging. For example,
in seL4, the thread queues are implemented as doubly-linked lists with the following invariant:

Invariant 1. All back links in thread queues point to appropriate nodes and all elements point to
thread control blocks.

Proving this invariant is difficult for several reasons. As stated in [20]:

Invariants are expensive because they need to be proved not only locally, but for the
whole kernel — we have to show that no other pointer manipulation in the kernel
accidentally destroys the list or its properties. [...] The treatment of globals becomes
especially difficult if the invariants are temporarily violated. For example, adding a new
node to a doubly-linked list temporarily violates invariants that the list is well formed.
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However, in our layered approach, global variables and the code that manipulates them are abstracted
as layer objects. The remaining kernel code cannot access the abstracted variables directly, since
they are hidden using CompCert memory permissions. Moreover, the abstract primitives are atomic,
hence there is no longer a point in the execution at which the invariants have to be temporarily
violated. Finally, some complex invariants are implied by the correspondence with our abstract
representations. For instance, in our setting, Inv. 1 naturally follows from the contextual refinement
between concrete thread queues and abstract “thread list” objects.

Initialization flag and primitive Each layer has exactly one initialization primitive, which can
be viewed as a special layer object together with the initialization flag. This logical initialization
flag is false in the initial state and is set to true by the initialization primitive. Most of the invariants
and specifications of non-initialization primitives require as a precondition that the initialization
flag is true. This guarantees that the initialization primitive is the first primitive that is executed.

3.3 Methods and Procedures: Introducing Abstraction Layers

Introducing new layers is a way to organize code and lift the abstraction level. In most cases, this
does not require modifying the implementation. In this section, the PI and his team discuss some of
the principles they used when drawing the boundaries of their kernel’s abstraction layers.

Principle 1: Introduce layers to reflect dependencies between kernel modules One purpose
of layers is to enforce code isolation and abstraction. When a module M depends on another module
N, abstraction layers should be organized in such a way that M can be reasoned about in terms of
an abstracted version of V.

For example, since the virtual memory management code relies on physical memory manage-
ment, the code which performs allocation and deallocation of physical pages in terms of allocation
tables is first abstracted into a layer object. This object provides the primitives palloc and pfree and
defines their abstract specifications. Then functions such as pt_insert and pt_rmv, which manipulate
page mappings at the virtual memory management level, can be verified with a more abstract
view of the allocation table, without worrying about its concrete memory representation and code
implementation. On the other hand, if two kernel modules mutually depend on each other, they
have to be introduced within a single layer.

Principle 2: Introduce a layer when the memory model changes In the machine memory
model, when paging is enabled, each memory access is accompanied by a two level page table walk
starting from the address stored in the CR3 register, shown in Fig. 4(a). Switches of page tables
are performed by storing the top address of the other page table structure into CR3. In the abstract
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memory model, we associate with each process a logical partial map from a virtual address to a
pair of physical address and permission. The address translations are performed using the logical
mappings of the currently-running process, shown in Fig. 4(b). With this high level memory model,
some complex properties like memory isolation can be proved more easily.

mCertiKOS uses an additional intermediate memory model. The mCertiKOS-hyp extension
presented in Sec. 4 uses yet another, virtualization-related model. They introduce a new layer
whenever we switch from one memory model to another and establish the contextual refinement
between them.

Principle 3: Introduce a layer when a stronger invariant needs to be proved After paging
is enabled, both kernel modules and user processes run in a virtual address space. To ensure the
correctness of these kernel modules and user processes on top of virtual memory management, we
require the following invariants to hold:

Invariant 2. /) paging is enabled only after the initialization of virtual memory management; 2)
the memory regions that store kernel-specific data must have the kernel-only permission in all
page maps; 3) the page map used by the kernel is an identity map 4) the non-shared parts of user
processes’ memory are isolated.

Inv. 2 no longer holds if the privileged primitive that sets the CR3 register is present in the layer,
as the unknown context code may write an invalid address into CR3 using the provided primitive.
To solve this issue, another layer is introduced with a wrapper function that takes the process id as
argument, instead of an actual address. Then the function sets CR3 to the starting address of the
predefined corresponding process’s page table structure. The primitive that directly sets the CR3
register is hidden from the new layer, and the invariants are introduced in the new layer. This is
one of the rare cases where performance overhead is introduced (one extra function call due to the
wrapper). It should be possible to use CompCertX’s function-inlining optimization to remove this
overhead (this is left as future work).

Principle 4: Introduce a layer to facilitate initialization proofs Recall that each layer contains
one initialization primitive. This primitive can be passed through from the layer below, or a new
one can be defined which extends that of the layer below so as to initialize the new layer’s data.
When a new layer object is introduced, we can create a new layer to initialize its abstract data to an
appropriate state. In the context of an operating system kernel, initialization functions are relatively
complex. Introducing an extra layer allows us to avoid directly reasoning over the concrete memory.
With this new layer, an initialization function is verified using a more abstract specification.
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4 RESULTS AND DISCUSSION

4.1 Certifying the mCertiKOS Kernel

In this section, the PI and his team describe the main parts of the certification of mCertiKOS. The
mCertiKOS kernel is divided into four main components (see Fig. 5) which consist of multiple
layers: the pre-initialization module (1 layer), the memory management (14 layers), the process
management (14 layers), and the trap handler (4 layers). The pre-initialization module contains
the bottom layer that corresponds to the physical machine and trap handler contains the top layer
provides system calls and serves as a specification of the whole kernel. Their main theorem states
that context code that is understood in terms of the topmost abstraction layer has an equivalent
behavior when run along with the kernel on the bottom-most layer.

The overall structure of the layered certification is shown in Fig. 5. Each row in the diagram
describes a layer. It consists of the name of the layer (on the very left) followed by the initialization
primitive (green background), and the memory model used by the layer (blue background). The
rest of the row describes layer objects, each in their own bordered rectangle. Normal white-filled
objects are used to implement new layers, while those filled with gray are hidden from higher
layers. Some objects span across multiple rows and are colored purple, meaning that they are
horizontally composed to implement higher layers. The objects with different subscripts indicate
different abstract view over the same data.

Pre-initialization module The pre-initialization module only contains the bottom-most layer
Prelnit. It is used to model the x86 hardware and axiomatizes the hardware behaviors that are
necessary to obtain end-to-end behaviors across the kernel and the user space. These behaviors
include page table walk upon memory load when paging is turned on, saving and restoring part of
the trap frame in the case of interrupts, and switching the stack pointer in the case of ring switch.

The x86 object is the only layer object in the Prelnit layer. It extends the CompCert assembly
semantics to model the low-level features of the machine. Its abstract state consists of control
registers, a physical memory map MM, and a kernel mode flag ikern. Its primitives consist of
getter-setter functions for control registers and MM, and a function models the transition between
user and kernel mode.

The state component MM is the abstraction of the E820 memory map provided by the bootloader.
The control registers, such as CR0O, CR2, and CR3, are used to model the behavior of the processor’s
memory management unit (MMU). When paging is enabled (as indicated by CR0), memory accesses
made by both the kernel and the user programs are translated using the page map pointed to by CR3
in the machine memory model. When a page fault occurs, the corresponding information is stored in
CR2 and the page fault handler is invoked. The logical flag ikern indicates whether the processor is
currently in the kernel or user mode. Some privileged memory regions (e.g., allocation table, page
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Figure 5: Layers of mCertiKOS
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map) and instructions (e.g., modifying control registers) are only available in the kernel mode.

Memory management The memory management of mCertiKOS consists of the physical memory
management (4 layers), virtual memory management (7 layers) and shared memory management (3
layers).

Based on the pre-initialization layer and the machine memory model, the physical memory
management abstracts the physical page allocation table into page objects. To better reason about
access control and isolation in the case of the dynamic resource allocation, each physical page
object maintains a logical state containing ownership information, and the page is only allowed to
be accessed by its owners.

On top of physical memory management, the virtual memory management provides consecutive
virtual address spaces. They proved not only that the primitives of virtual memory management
manipulate the address space correctly, but also that the initialization procedure sets up the two-level
page maps properly in terms of hardware address translation. The Inv. 2 they have proved guarantees
that it is safe to run both the kernel and user programs in the virtual address space when paging is
enabled.

The shared memory management provides a protocol to share physical pages among different
user processes. It provides an infrastructure to map a physical page into multiple processes’ page
maps in different address spaces. Their ownership mechanism ensures that the page can only be
freed once all processes release ownership.

Enforcing memory quotas Another function of the physical memory management is to dynami-
cally track and bound the memory usage (in terms of number of dynamically-allocated pages) of
processes based on their id.

In mCertiKOS, they consider every unique integer (up to some predefined maximum, currently
218) to represent a different agent or principal. They refer to this integer as the agent’s id, and they
use it for all layer objects owned by that agent.

The MContainer layer introduces a notion of container, inspired by container objects in the
HiStar operating system [42]. Whenever a new agent (id) is created in mCertiKOS, a container
is created for the agent that dynamically keeps track of its memory usage. An agent’s usage may
increase for a few reasons, including a direct request for dynamically-allocated resources, or a
successfully-handled page fault. Each container object is initialized with some maximum quota;
any attempt for an agent to increase its usage beyond this quota will be denied by the kernel.
Furthermore, the kernel maintains a mapping of ids to containers using a hierarchical tree structure.
Whenever an agent’s process makes a request to spawn a new process, the new container is added
as a child to the requesting agent’s container, and the new container’s quota is taken from the
requester’s.
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With this notion of container, they are able to prove a theorem about reliability of dynamic
memory allocation: agents’ requests for additional resources will always be fulfilled as long as
their quota is not exceeded. Furthermore, from the viewpoint of information-flow security, resource
quotas close the potential for two different processes to communicate via allocation requests. Hence
quota enforcement provides an additional level of security for mCertiKOS. They plan to extend the
concept of containers to other types of resources in the future. For example, they could maintain
a time-slice quota for each agent. This would provide a foundation for reasoning about liveness
properties for processes and security breaches via timing channels.

Process management Process management depends on virtual address spaces and introduces the
thread and proc objects as the abstractions of threads and processes, respectively. One interesting
aspect of the process management component is the context switch function. This assembly function
saves the register set of the current thread and restores the register set from the kernel context of
another thread. Since the instruction pointer register (EIP) and stack pointer register (ESP) are saved
and restored in this procedure, they can show that this function reflects the C-level behavior and
restores the continuation of a thread’s execution. Even though this kernel context switch function is
verified at assembly level, they prove that it will not violate the convention of ClightX execution.
This enables us to link it with other code that is verified at C-level and compiled by CompCertX.

In the process management component, they have also implemented and verified a single-copy
synchronous inter-process communication (IPC) protocol. Additionally, they have verified an asyn-
chronous zero-copy IPC implementation that is built on top of their shared memory infrastructure.

Trap module The trap module specifies the behaviors of exception handlers and mCertiKOS
system calls. In mCertiKOS, exception handlers are registered in a table of first-class code pointers.
When an exception triggers (via interrupt), the kernel consults this table and invokes the corre-
sponding exception handler. For example, a page fault at the user level traps into the kernel. The
page fault handler then reserves a page for PFLA (if necessary) and returns to the user level. The
verification of the page fault handler depends on layer objects introduced at different abstraction
levels (see Fig. 6). Therefore, the behavior of the page fault handler is interpreted by the concrete
first-class code pointer until all the dependent layer objects are introduced. Then the handler code is
verified and the behavior is interpreted using its abstract atomic specification.

To further simplify the reasoning about user code, they have implemented and verified the
user level system call libraries directly in the user space. Since their machine semantics models
hardware behaviors like paging and ring switch, the specifications of user system call libraries
closely corresponds to the real execution model in the actual hardware. With this atomic system
call semantics in the user level, the user code can be proved much more easily.
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Figure 6: Call graph of page fault handler

4.2 Extensions and Adaptation

One primary advantage of the PI and his team’s new extensible architecture is that it makes certified
kernel extension and reasoning much easier and more principled. In this section, they describe three
alternative mCertiKOS kernels that they created through relatively minor changes to the base kernel.
They then present a specific example of global reasoning over the mCertiKOS kernel — a simple
notion of address space isolation that will serve as a starting point for a full-fledged security proof
in the future.

mCertiKOS-hyp: supporting virtualization They also augmented mCertiKOS to support the
two hardware-assisted virtualization technologies Intel VT-x and AMD SVM, and built a certified
hypervisor mCertiKOS-hyp.

Fig. 7 shows the 7 layers of the virtual machine management of mCertiKOS-hyp on the Intel
platform. VMInfo is the layer object that axiomatizes some of the hardware specific features needed
for the virtualization support. Since it is orthogonal to memory and process management, the
VMInfo object can be horizontally composed with the layers below PProc in mCertiKOS. On top of
this extended PProc layer, the virtual machine management extends the abstract memory model with
the notions of Extended Page Table (EPT), the virtual machine control structure (VMCS), and the
virtual machine extension meta data (VMX), which are abstracted into corresponding layer objects.
These objects are again orthogonal to the trap module above and can be horizontally composed to
export related system calls with minimal cost.
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Figure 7: Layers of virtual machine management

mCertiKOS-rz: supporting ring 0 processes Thanks to the contextual refinement relation they
have proved for mCertiKOS, one can certify user programs using their formal specifications of
system calls. This gives end-to-end proofs on the behaviors of user programs when they run on
mCertiKOS. Furthermore, once certified, these processes can safely run in the privileged ring 0
mode. They extended mCertiKOS into mCertiKOS-rz by adding support for spawning “in-kernel
processes” that run in the privileged ring O mode. Ring O processes get much better system call
performance by directly calling kernel functions and avoiding ring switch and interrupt processing.

To introduce ring 0 processes to mCertiKOS, they added a single layer on top of the existing
process management module: Spawning a ring 0 process sets the initial ESP register to a preallocated
memory region and then spawns a proper kernel thread. The memory region must be verifiably
sufficient for the entire execution of the process.

mCertiKOS-emb: embedded systems The mCertiKOS-emb kernel is intended for embedded
settings. To develop this kernel they started with mCertiKOS-rz and removed the virtual machine
management, the virtual memory management, and some of the process management layers that are
related to user contexts and user process management. Thus mCertiKOS-emb only supports ring 0
processes which run directly inside the physical kernel address space instead of the user-level paged
virtual address space.

Removing plug-ins or layers does not take much effort. They only need to alter the contextual
refinement proof at the boundary so they can glue them back together.

Isolation in mCertiKOS They have begun exploring the verification of a global security property
on top of mCertiKOS. As a starting point, they proved a basic notion of isolation between user-level
processes running in different virtual address spaces. This isolation property is composed of two
theorems: one regarding integrity (write protection), and another regarding confidentiality (read
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Figure 8: Performance evaluation with micro benchmarks.

protection, or noninterference). The statements of these two theorems are as follows: suppose the
top layer abstract machine takes one step, changing the machine state from S to .S’, and let p be the
id of the currently-running process (which can be found in S5).

Integrity: If the value at some non-kernel memory location [ differs between S and S’, then [
belongs to a page that is mapped in the virtual address space of p.

Confidentiality: If the step taken is not a primitive call to an IPC syscall (send, recv, etc.), then the
values of memory in any address space other than p’s cannot have an effect on the result of
the step. In other words, if they altered .S by changing data in a different process’s address
space, the step would still have the same effect on p’s address space.

In the future, they plan to provide a more detailed security policy by describing what can happen
to confidentiality when IPC is used. This description will be expressed in terms of propagation of
security labels on the IPC data. Note, however, that their framework allows for security labels to be
specified at a purely logical level — there is no need for concrete representation and manipulation
of labels at run time.

Noninterference properties are generally not preserved across refinement due to nondeterminism.
It may therefore seem that the aforementioned confidentiality holds only at the topmost layer,
but not at lower layers. It turns out, however, that their notion of deep specification is strong
enough to preserve noninterference. Essentially, to give a deep specification to a nondeterministic
semantics, they must first externalize the source of nondeterminism (e.g., into an oracle). The
noninterference property then becomes parameterized over this source of nondeterminism, which
allows the parameterized property to be preserved across refinement. This relationship between
deep specification, noninterference, and refinement will be explored comprehensively in future
work.
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4.3 Performance Evaluation and Proof Effort

The PI and his team have also analyzed the performance of the mCertiKOS-hyp hypervisor ker-
nel with a thorough experimental benchmark evaluation. Furthermore, an extended version of
mCertiKOS-hyp was deployed in a practical system that is used in the context of another related
research project funded by the DARPA HACMS program. Their experiments with benchmarks
confirm the observations made during deployment: the performance overhead of mCertiKOS-hyp
is moderate. They are convinced that it is practical to use their verification framework to produce
competitive real-world kernels with acceptable effort.

Performance evaluation They used a number of micro and macro benchmarks to measure the
overhead of mCertiKOS-hyp and to compare mCertiKOS-hyp to existing systems such as KVM
and selL4. All experiments have been performed on an Intel Core 17-2600 S with 8 MB L3 cache,
16 GB memory, and a 120 GB Intel 520 SSD. Since the power control code has not been verified,
they disabled the turbo boost and power management features of the hardware during experiments.

A comparison of the performance of seL.4 and mCertiKOS-hyp is not straightforward since
the mCertiKOS kernels run on x86 platforms but the verified seL.4 runs on ARMv6 and ARNv7
hardware. Moreover, the verified version of sel.4 does not have virtualization support and cannot
boot Linux. As a result, they do not compare hypervisor performance but instead focus on a
comparison of the IPC performance of mCertiKOS-hyp and an unverified x86 version of seL4.

IPC Performance They compared IPC in mCertiKOS-hyp and the (unverified) x86 version of
seL4. They used seL.4’s IPC benchmark sel4bench-manifest' with processes in different address
spaces and with identical scheduler priorities, both in slowpath and fastpath configurations. To
run this benchmark on mCertiKOS-hyp, they replaced sel.4’s Call and ReplyWait operations
with mCertiKOS-hyp synchronous send and receive operations. Fig. 8 (on the right) contains a
compilation of their results. It shows the average number of clock cycles needed for the operations
for message sizes 0 and 1000.

Because selL4 follows the microkernel design philosophy, its IPC performance is critical. IPC
implementations in sel.4 are highly optimized, and heavily tailored to specific hardware platforms.
While this degree of optimization gives seL.4 an advantage in IPC intensive systems, they currently
do not see the need to improve IPC performance in mCertiKOS-hyp for application scenarios of the
kernel that they have in mind.

Hypervisor Performance To evaluate mCertiKOS-hyp as a hypervisor, they measured the per-
formance of micro and macro benchmarks on Ubuntu 12.04.2 LTS running as a guest.

Thttps://github.com/smaccm/sel4bench-manifest
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Figure 9: Normalized macro benchmarks: Linux on KVM and mCTOS, baseline is Linux on bare
metal

Fig. 9 contains a compilation of standard macro benchmarks: unpacking of the Linux 4.0-rc4
kernel, compilation of the Linux 4.0-rc4 kernel, and Apache HTTPerf. They ran the benchmarks on
Linux as guest in KVM and mCertiKOS-hyp, as well as on bare metal. In Fig. 9 they normalized the
run times of the benchmarks using the bare metal performance as a baseline (100%). The overhead
of mCertiKOS-hyp is moderate and comparable to KVM. They attribute the larger overhead for
decompression to their unverified SSD driver that still contains performance bugs (compare disk
dump in Fig. 8).

Fig. 8 (on the left) shows a compilation of micro benchmarks from the LMbench benchmark
suite [29]. They measure the performance of the file system, some local communication systems,
virtual memory, context switch and, for sanity checking, basic arithmetic operations. On the x-axes
of the plots are the names of the respective LMbench benchmarks. The y-axes of the two plots
at the top left show the run time in nanoseconds and microseconds, respectively. The other three
y-axes show the throughput in MB/s.

In many cases, the performance of mCertiKOS-hyp is in between bare metal and KVM (Kernel
Virtual Machine). However, there are still some rough edges in the results that they mostly attribute
to performance problems with their unverified SSD driver. This is indicated for instance by the
disk dump benchmark in which the transfer rate seems to remain constant as the data size increases.
They are currently investigating the issue.

The virtualization drivers in mCertiKOS-hyp are running in a user process in the ring 3 mode.
This approach makes the kernel smaller and makes it possible to use an unverified driver. The
downside of this approach is that each VM entry and exit causes an additional ring switch, and
VM-related information must be copied to the user driver process in order for it to process the
exit. Therefore, it may have an impact on performance, especially for those guest programs that
frequently cause VM exits, such as web servers, which generate frequent network-related external
interrupts. Another approach is to verify the drivers and run them inside a kernel module, e.g., in a
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ring 0 process.

Proof effort The PI and his team completed the verification of mCertiKOS-hyp in less than 18
person months (pm). The layer design and verification took about 3 pm for the physical memory
management (4 layers), 3.5 pm for the virtual memory module (7 layers), 1 pm for the shared
memory infrastructure (3 layers), 3.5 pm for the thread management (10 layers), 1 pm for the
process management (4 layers), 1.5 pm for the trap handler module (4 layers), 1.5 pm for the AMD
SVM virtualization (9 layers), and 2 pm for the Intel VT-x virtualization support (7 layers). In total
the verified mCertiKOS-hyp kernel consists of 5500 lines of C and x86 assembly code.

The verification effort roughly falls into three categories: layer design with specification and
invariants, refinement proofs between the layers, and verification of C and assembly code with
respect to the specifications. The time needed for each of the categories depends largely on the layer.
For instance, at the boundary of physical and virtual memory management (MPTIntro), almost
all effort is in the refinement proof, due to the proof for the refinement between two completely
different memory models. More effort went into the refinement proof when they introduced the
Intel virtual machine memory model, where they proved the refinement between the concrete four
level extended page table structure in memory and the abstract mapping from the guest addresses to
the host addresses. In contrast, for the layer MATOp, which initializes physical memory allocation,
most of the time was spent on verifying the non-trivial nested loops present in the C code, while the
refinement proofs were derived automatically.

The proofs were facilitated by automation tools for C code, layer design patterns, and tactics
libraries developed in recent years [14]. These tools have greatly reduced the amount of work
needed to verify extensions of the kernel.

4.4 Other Important Results

In addition to developing new cutting-edge technologies for building certified OS kernels, the PI
and his team have also obtained the following important results. We annotate each technology
with a publication venue where the main result is first published. Here, POPL refers to “ACM
SIGPLAN-SIGACT Annual Symposium on Principles of Programming Languages;” PLDI refers to
“ACM SIGPLAN Conference on Programming Language Design and Implementation;” ESOP refers
to “European Symposium on Programming;” APLAS refers to “Asian Symposium on Programming
Languages and Systems;” CPP refers to “International Conference on Certified Programs and
Proofs;” LICS refers to “IEEE International Conference on Logic in Computer Science;” POST
refers to “International Conference on Principles of Security and Trust;” CONCUR refers to
“International Conference on Concurrency Theory.” All papers referenced here are attached in the
Appendix.
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Deep specifications and certified abstraction layers (POPL’15) Modern computer systems
consist of a multitude of abstraction layers (e.g., OS kernels, hypervisors, device drivers, network
protocols), each of which defines an interface that hides the implementation details of a particular
set of functionality. Client programs built on top of each layer can be understood solely based on the
interface, independent of the layer implementation. Despite their obvious importance, abstraction
layers have mostly been treated as a system concept; they have almost never been formally specified
or verified. This makes it difficult to establish strong correctness properties, and to scale program
verification across multiple layers.

In this work, the PI and his team present a novel language-based account of abstraction layers
and show that they correspond to a strong form of abstraction over a particularly rich class of
specifications which they call deep specifications. Just as data abstraction in typed functional
languages leads to the important representation independence property, abstraction over deep
specification is characterized by an important implementation independence property: any two
implementations of the same deep specification must have contextually equivalent behaviors. They
present a new layer calculus showing how to formally specify, program, verify, and compose
abstraction layers. They show how to instantiate the layer calculus in realistic programming
languages such as C and assembly, and how to adapt the CompCert verified compiler to compile
certified C layers such that they can be linked with assembly layers. Using these new languages and
tools, they have successfully developed multiple certified OS kernels in the Coq proof assistant.

Compositional Certified Resource Bounds (PLDI’15) In this work, the PI and his team de-
veloped a new approach for automatically deriving worst-case resource bounds for C programs.
The described technique combines ideas from amortized analysis and abstract interpretation in
a unified framework to address four challenges for state-of-the-art techniques: compositionality,
user interaction, generation of proof certificates, and scalability. Compositionality is achieved
by incorporating the potential method of amortized analysis. It enables the derivation of global
whole-program bounds with local derivation rules by naturally tracking size changes of variables in
sequenced loops and function calls. The resource consumption of functions is described abstractly
and a function call can be analyzed without access to the function body. User interaction is sup-
ported with a new mechanism that clearly separates qualitative and quantitative verification. A
user can guide the analysis to derive complex non-linear bounds by using auxiliary variables and
assertions. The assertions are separately proved using established qualitative techniques such as
abstract interpretation or Hoare logic. Proof certificates are automatically generated from the local
derivation rules. A soundness proof of the derivation system with respect to a formal cost semantics
guarantees the validity of the certificates. Scalability is attained by an efficient reduction of bound
inference to a linear optimization problem that can be solved by off-the-shelf LP solvers. The
analysis framework is implemented in the publicly-available tool C4B. An experimental evaluation
demonstrates the advantages of the new technique with a comparison of C4B with existing tools on
challenging micro benchmarks and the analysis of more than 2900 lines of C code from the cBench
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benchmark suite.

Automatic Static Cost Analysis for Parallel Programs (ESOP’15) Static analysis of the eval-
uation cost of programs is an extensively studied problem that has many important applications.
However, most automatic methods for static cost analysis are limited to sequential evaluation while
programs are increasingly evaluated on modern multicore and multiprocessor hardware. This work
introduces the first automatic analysis for deriving bounds on the worst-case evaluation cost of
parallel first-order functional programs. The analysis is performed by a novel type system for
amortized resource analysis. The main innovation is a technique that separates the reasoning about
sizes of data structures and evaluation cost within the same framework. The cost semantics of
parallel programs is based on call-by-value evaluation and the standard cost measures work and
depth. A soundness proof of the type system establishes the correctness of the derived cost bounds
with respect to the cost semantics. The derived bounds are multivariate resource polynomials
which depend on the sizes of the arguments of a function. Type inference can be reduced to linear
programming and is fully automatic. A prototype implementation of the analysis system has been
developed to experimentally evaluate the effectiveness of the approach. The experiments show
that the analysis infers bounds for realistic example programs such as quick sort for lists of lists,
matrix multiplication, and an implementation of sets with lists. The derived bounds are often
asymptotically tight and the constant factors are close to the optimal ones.

A Compositional Semantics for Verified Separate Compilation and Linking (CPP’15) Re-
cent ground-breaking efforts such as CompCert have made a convincing case that mechanized
verification of the compiler correctness for realistic C programs is both viable and practical. Unfor-
tunately, existing verified compilers can only handle whole programs—this severely limits their
applicability and prevents the linking of verified C programs with verified external libraries. In this
work, the PI and his team present a novel compositional semantics for reasoning about open modules
and for supporting verified separate compilation and linking. More specifically, they replace external
function calls with explicit events in the behavioral semantics. They then develop a verified linking
operator that makes lazy substitutions on (potentially reacting) behaviors by replacing each external
function call event with a behavior simulating the requested function. Finally, they show how
our new semantics can be applied to build a refinement infrastructure that supports both vertical
composition and horizontal composition.

Compositional Verification of Termination-Preserving Refinement of Concurrent Programs
(LICS’14) Many verification problems can be reduced to refinement verification. However,
existing work on verifying refinement of concurrent programs either fails to prove the preservation
of termination, allowing a diverging program to trivially refine any programs, or is difficult to
apply in compositional thread-local reasoning. In this work, the PI and his colleague at USTC first
propose a new simulation technique, which establishes termination-preserving refinement and is a
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congruence with respect to parallel composition. Then they give a proof theory for the simulation,
which is the first Hoare-style concurrent program logic supporting termination-preserving refinement
proofs. They show two key applications of our logic, i.e., verifying linearizability and lock-freedom
together for fine-grained concurrent objects, and verifying full correctness of optimizations of
concurrent algorithms.

End-to-End Verification of Stack-Space Bounds for C Programs (PLDI’14) Verified compil-
ers guarantee the preservation of semantic properties and thus enable formal verification of programs
at the source level. However, important quantitative properties such as memory and time usage
still have to be verified at the machine level where interactive proofs tend to be more tedious and
automation is more challenging. In this work, the PI and his team develop a new framework that
enables the formal verification of stack-space bounds of compiled machine code at the C level. It
consists of a verified CompCert-based compiler that preserves quantitative properties, a verified
quantitative program logic for interactive stack-bound development, and a verified stack analyzer
that automatically derives stack bounds during compilation.

The framework is based on event traces that record function calls and returns. The source
language is CompCert Clight and the target language is x86 assembly. The compiler is implemented
in the Coq Proof Assistant and it is proved that crucial properties of event traces are preserved
during compilation. A novel quantitative Hoare logic is developed to verify stack-space bounds at
the CompCert Clight level. The quantitative logic is implemented in Coq and proved sound with
respect to event traces generated by the small-step semantics of CompCert Clight. Stack-space
bounds can be proved at the source level without taking into account low-level details that depend on
the implementation of the compiler. The compiler fills in these low-level details during compilation
and generates a concrete stack-space bound that applies to the produced machine code. The verified
stack analyzer is guaranteed to automatically derive bounds for code with non-recursive functions.
It generates a derivation in the quantitative logic to ensure soundness as well as interoperability
with interactively developed stack bounds. In an experimental evaluation, the developed framework
is used to obtain verified stack-space bounds for micro benchmarks as well as real system code. The
examples include the verified operating-system kernel CertiKOS, parts of the MiBench embedded
benchmark suite, and programs from the CompCert benchmarks. The derived bounds are close to
the measured stack-space usage of executions of the compiled programs on a Linux x86 system.

A Separation Logic for Enforcing Declarative Information Flow Control Policies (POST’14)
In this work, the PI and his student develop a new program logic for proving that a program does
not release information about sensitive data in an unintended way. The most important feature of
the logic is that it provides a formal security guarantee while supporting “declassification policies”
that describe precise conditions under which a piece of sensitive data can be released. They leverage
the power of Hoare Logic to express the policies and security guarantee in terms of state predicates.
This allows their system to be far more specific regarding declassification conditions than most
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other information flow systems. The logic is designed for reasoning about a C-like, imperative
language with pointer manipulation and aliasing. They therefore make use of ideas from Separation
Logic to reason about data in the heap.

Characterizing Progress Properties of Concurrent Objects via Contextual Refinements (CON-
CUR’13) Implementations of concurrent objects should guarantee linearizability and a progress

property such as wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, or deadlock-
freedom. Conventional informal or semi-formal definitions of these progress properties describe

conditions under which a method call is guaranteed to complete, but it is unclear how these de-
motions can be utilized to formally verify system software in a layered and modular way. In this

work, the PI and his team propose a unified framework based on contextual refinements to show

exactly how progress properties aect the behaviors of client programs. They give formal operational

definitions of all common progress properties and prove that for linearizable objects, each progress

property is equivalent to a specific type of contextual refinement that preserves termination. The

equivalence ensures that verification of such a contextual refinement for a concurrent object guar-
antees both linearizability and the corresponding progress property. Contextual refinement also

enables them to verify safety and liveness properties of client programs at a high abstraction level

by soundly replacing concrete method implementations with abstract atomic operations.

Quantitative Reasoning for Proving Lock-Freedom (LICS’13) In this work, the PI and his
team present a novel quantitative proof technique for the modular and local verification of lock-
freedom. In contrast to proofs based on temporal rely-guarantee requirements, this new quantitative
reasoning method can be directly integrated in modern program logics that are designed for the
verification of safety properties. Using a single formalism for verifying memory safety and lock-
freedom allows a combined correctness proof that verifies both properties simultaneously. This
work presents one possible formalization of this quantitative proof technique by developing a variant
of concurrent separation logic (CSL) for total correctness. To enable quantitative reasoning, CSL
is extended with a predicate for affine tokens to account for, and provide an upper bound on the
number of loop iterations in a program. Lock-freedom is then reduced to total-correctness proofs.
Quantitative reasoning is demonstrated in detail, both informally and formally, by verifying the
lockfreedom of Treiber’s non-blocking stack. Furthermore, it is shown how the technique is used
to verify the lock-freedom of more advanced shared-memory data structures that use elimination
backoff schemes and hazard-pointers.

Compositional Verification of a Baby Virtual Memory Manager (CPP’12) A virtual memory
manager (VMM) is a part of an operating system that provides the rest of the kernel with an abstract
model of memory. Although small in size, it involves complicated and interdependent invariants
that make monolithic verification of the VMM and the kernel running on top of it difficult. In this
work, the PI and his team make the observation that a VMM is constructed in layers: physical page
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allocation, page table drivers, address space API, etc., each layer providing an abstraction that the
next layer utilizes. They use this layering to simplify the verification of individual modules of VMM
and then to link them together by composing a series of small refinements. The compositional
verification also supports function calls from less abstract layers into more abstract ones, allowing
us to simplify the verification of initialization functions as well. To facilitate such compositional
verification, they develop a framework that assists in creation of verification systems for each layer
and refinements between the layers. Using this framework, they have produced a certification of
BabyVMM, a small VMM designed for simplified hardware. The same proof also shows that a
certified kernel using BabyVMM'’s virtual memory abstraction can be refined following a similar
sequence of refinements, and can then be safely linked with BabyVMM. Both the verification
framework and the entire certification of BabyVMM have been mechanized in the Coq Proof
Assistant.

A Case for Behavior-Preserving Actions in Separation Logic (APLAS’12) Separation Logic
is a widely-used tool that allows for local reasoning about imperative programs with pointers.
A straightforward definition of this “’local reasoning” is that, whenever a program runs safely
on some state, any additional state has no effect on the program’s behavior. In the presence of
nondeterminism, however, local reasoning must be defined as something more subtle; specifically,
additional state is allowed to decrease the amount of nondeterminism of the program. This subtlety
causes difficulty in proving various metatheoretical facts about Separation Logic and its variants.
Four specific examples are: (1) specifying the behavior of a program on its minimal footprint does
not provide a complete specification; (2) data refinement requires a rather unintuitive restriction
that the memory used by an abstract module be a subset of the memory used by a concrete module
refining the abstract one; (3) Relational Separation Logic requires quite a bit of additional work
to prove the frame rule sound; and (4) it is quite tricky to define a model of Separation Logic in
which the total domain of memory is finite. In this work, the PI and his student show how to cleanly
resolve all of these issues by strengthening the definition of local reasoning to eliminate the subtlety.
They contend that this solution will also similarly resolve future metatheoretical issues.

Modular Verification of Concurrent Thread Management (APLLAS’12) Thread management
is an essential functionality in OS kernels. However, verification of thread management remains a
challenge, due to two conflicting requirements: on the one hand, a thread manager—operating below
the thread abstraction layer—should hide its implementation details and be verified independently
from the threads being managed; on the other hand, the thread management code in many real-
world systems is concurrent, which might be executed by the threads being managed, so it seems
inappropriate to abstract threads away in the verification of thread managers. Previous approaches
on kernel verification view thread managers as sequential code, thus cannot be applied to thread
management in realistic kernels. In this work, the PI and his team propose a novel two-layer
framework to verify concurrent thread management. They choose a lower abstraction level than
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the previous approaches, where they abstract away the context switch routine only, and allow
the rest of the thread management code to run concurrently in the upper level. They also treat
thread management data as abstract resources so that threads in the environment can be specified in
assertions and be reasoned about in a proof system similar to concurrent separation logic.

VeriML: A Dependently-Typed, User-Extensible, and Language-Centric Approach to Proof
Assistant Software certification is a promising approach to producing programs which are virtually
free of bugs. It requires the construction of a formal proof which establishes that the code in question
will behave according to its specification — a higher-level description of its functionality. The
construction of such formal proofs is carried out in tools called proof assistants. Advances in the
current state-of-the-art proof assistants have enabled the certification of a number of complex and
realistic systems software.

Despite such success stories, large-scale proof development is an arcane art that requires
significant manual effort and is extremely time-consuming. The widely accepted best practice for
limiting this effort is to develop domain-specific automation procedures to handle all but the most
essential steps of proofs. Yet this practice is rarely followed or needs comparable development effort
as well. This is due to a profound architectural shortcoming of existing proof assistants: developing
automation procedures is currently overly complicated and error-prone. It involves the use of an
amalgam of extension languages, each with a different programming model and a set of limitations,
and with significant interfacing problems between them.

This thesis by Antonis Stampoulis (supervised by the PI) posits that this situation can be
significantly improved by designing a proof assistant with extensibility as the central focus. Towards
that effect, Stampoulis and the PI have designed a novel programming language called VeriML,
which combines the benefits of the different extension languages used in current proof assistants
while eschewing their limitations. The key insight of the VeriML design is to combine a rich
programming model with a rich type system, which retains at the level of types information
about the proofs manipulated inside automation procedures. The effort required for writing new
automation procedures is significantly reduced by leveraging this typing information accordingly.

They show that generalizations of the traditional features of proof assistants are a direct conse-
quence of the VeriML design. Therefore the language itself can be seen as the proof assistant in
its entirety and also as the single language the user has to master. Also, they show how traditional
automation mechanisms offered by current proof assistants can be programmed directly within the
same language; users are thus free to extend them with domain-specific sophistication of arbitrary
complexity. In the dissertation they present all aspects of the VeriML language: the formal defini-
tion of the language; an extensive study of its metatheoretic properties; the details of a complete
prototype implementation; and a number of examples implemented and tested in the language.
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Static and User-Extensible Proof Checking (POPL’12) Despite recent successes, large-scale
proof development within proof assistants remains an arcane art that is extremely time-consuming.
The PI and his team argue that this can be attributed to two profound shortcomings in the architecture
of modern proof assistants. The first is that proofs need to include a large amount of minute detail;
this is due to the rigidity of the proof checking process, which cannot be extended with domain-
specific knowledge. In order to avoid these details, they rely on developing and using tactics,
specialized procedures that produce proofs. Unfortunately, tactics are both hard to write and hard to
use, revealing the second shortcoming of modern proof assistants. This is because there is no static
knowledge about their expected use and behavior. As has recently been demonstrated, languages
that allow type-safe manipulation of proofs, like Beluga, Delphin and VeriML, can be used to partly
mitigate this second issue, by assigning rich types to tactics. Still, the architectural issues remain.
In this work, the PI and his team build on this existing work, and demonstrate two novel ideas: an
extensible conversion rule and support for static proof scripts. Together, these ideas enable us to
support both user-extensible proof checking, and sophisticated static checking of tactics, leading
to a new point in the design space of future proof assistants. Both ideas are based on the interplay
between a light-weight staging construct and the rich type information available.
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S CONCLUSIONS

Operating System (OS) kernels form the bedrock of all system software—they can have the greatest
impact on the resilience, extensibility, and security of today’s computing hosts. A single kernel bug
can easily wreck the entire system’s integrity and protection. During the last four years, the PI and
his team at Yale have successfully designed and implemented a clean-slate CertiKOS hypervisor
kernel that runs on Intel and AMD multicore platforms and supports Linux and ROS applications
on Landshark UGV with good performance. They have also developed new certified programming
methodologies and tools that support programming and composing certified abstraction layers (in
C and assembly) and verify contextual safety, correctness, liveness, and security properties in one
unified setting. They developed a fully specificied and verified single-core mCertiKOS kernel in
Coq that is highly compositional with formally specified layers and strong contextual correctness
guarantees. They also developed new semantics and logics for reasoning about declarative and
decentralized information flow control with declassification, new certified resource anlaysis tools,
and new logics for verifying safety and liveness properties of fine-grained concurrent programs.
Finally, they developed new proof automation support including the design and implementation of
the VeriML language and new Coq Ltac libraries.

Traditional OS kernels use a hardware-enforced “red line” to isolate the behaviors of user
programs and to protect the integrity of the kernel code. The PI and his team’s new layered approach
to certified kernels replaces the red line with a large number of abstraction layers enforced via
formal specification and proofs. They believe this will open up a whole new dimension of research
efforts toward building truly reliable, secure, and extensible system software.
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Abstract

Despite recent successes, large-scale proof development within
proof assistants remains an arcane art that is extremely time-
consuming. We argue that this can be attributed to two profound
shortcomings in the architecture of modern proof assistants. The
first is that proofs need to include a large amount of minute detail;
this is due to the rigidity of the proof checking process, which can-
not be extended with domain-specific knowledge. In order to avoid
these details, we rely on developing and using tactics, specialized
procedures that produce proofs. Unfortunately, tactics are both hard
to write and hard to use, revealing the second shortcoming of mod-
ern proof assistants. This is because there is no static knowledge
about their expected use and behavior.

As has recently been demonstrated, languages that allow type-
safe manipulation of proofs, like Beluga, Delphin and VeriML,
can be used to partly mitigate this second issue, by assigning rich
types to tactics. Still, the architectural issues remain. In this paper,
we build on this existing work, and demonstrate two novel ideas:
an extensible conversion rule and support for static proof scripts.
Together, these ideas enable us to support both user-extensible
proof checking, and sophisticated static checking of tactics, leading
to a new point in the design space of future proof assistants. Both
ideas are based on the interplay between a light-weight staging
construct and the rich type information available.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Verification

1. Introduction

There have been various recent successes in using proof assistants
to construct foundational proofs of large software, like a C com-
piler [Leroy 2009] and an OS microkernel [Klein et al. 2009], as
well as complicated mathematical proofs [Gonthier 2008]. Despite
this success, the process of large-scale proof development using
the foundational approach remains a complicated endeavor that re-
quires significant manual effort and is plagued by various architec-
tural issues.

The big benefit of using a foundational proof assistant is that
the proofs involved can be checked for validity using a very small
proof checking procedure. The downside is that these proofs are
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very large, since proof checking is fixed. There is no way to add
domain-specific knowledge to the proof checker, which would en-
able proofs that spell out less details. There is good reason for this,
too: if we allowed arbitrary extensions of the proof checker, we
could very easily permit it to accept invalid proofs.

Because of this lack of extensibility in the proof checker, users
rely on tactics: procedures that produce proofs. Users are free to
write their own tactics, that can create domain-specific proofs. In
fact, developing domain-specific tactics is considered to be good
engineering when doing large developments, leading to signifi-
cantly decreased overall effort — as shown, e.g. in Chlipala [2011].
Still, using and developing tactics is error-prone. Tactics are essen-
tially untyped functions that manipulate logical terms, and thus tac-
tic programming is untyped. This means that common errors, like
passing the wrong argument, or expecting the wrong result, are not
caught statically. Exacerbating this, proofs contained within tactics
are not checked statically, when the tactic is defined. Therefore,
even if the tactic is used correctly, it could contain serious bugs that
manifest only under some conditions.

With the recent advent of programming languages that sup-
port strongly typed manipulation of logical terms, such as Beluga
[Pientka and Dunfield 2008], Delphin [Poswolsky and Schiirmann
2008] and VeriML [Stampoulis and Shao 2010], this situation can
be somewhat mitigated. It has been shown in Stampoulis and Shao
[2010] that we can specify what kinds of arguments a tactic expects
and what kind of proof it produces, leading to a type-safe program-
ming style. Still, this does not address the fundamental problem of
proof checking being fixed — users still have to rely on using tac-
tics. Furthermore, the proofs contained within the type-safe tactics
are in fact proof-producing programs, which need to be evaluated
upon invocation of the tactic. Therefore proofs within tactics are
not checked statically, and they can still cause the tactics to fail
upon invocation.

In this paper, we build on the past work on these languages,
aiming to solve both of these issues regarding the architecture of
modern proof assistants. We introduce two novel ideas: support
for an extensible conversion rule and static proof scripts inside
tactics. The former technique enables proof checking to become
user-extensible, while maintaining the guarantee that only logically
sound proofs are admitted. The latter technique allows for statically
checking the proofs contained within tactics, leading to increased
guarantees about their runtime behavior. Both techniques are based
on the same mechanism, which consists of a light-weight staging
construct. There is also a deep synergy between them, allowing us
to use the one to the benefit of the other.

Our main contributions are the following:

e First, we present what we believe is the first technique for hav-
ing an extensible conversion rule, which combines the follow-
ing characteristics: it is safe, meaning that it preserves logical
soundness; it is user-extensible, using a familiar, generic pro-
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Figure 1. Checking proof scripts in various proof assistants

gramming model; and, it does not require metatheoretic addi-
tions to the logic, but can be used to simplify the logic instead.

¢ Second, building on existing work for typed tactic development,
we introduce static checking of the proof scripts contained
within tactics. This significantly reduces the development effort
required, allowing us to write tactics that benefit from existing
tactics and from the rich type information available.

e Third, we show how typed proof scripts can be seen as an
alternative form of proof witness, which falls between a proof
object and a proof script. Receivers of the certificate are able to
decide on the tradeoff between the level of trust they show and
the amount of resources needed to check its validity.

In terms of technical contributions, we present a number of tech-
nical advances in the metatheory of the aforementioned program-
ming languages. These include a simple staging construct that is
crucial to our development and a new technique for variable rep-
resentation. We also show a condition under which static checking
of proof scripts inside tactics is possible. Last, we have extended
an existing prototype implementation with a significant number of
features, enabling it to support our claims, while also rendering its
use as a proof assistant more practical.

2. Informal presentation

Glossary of terms. We will start off by introducing some con-
cepts that will be used throughout the paper. The first fundamental
concept we will consider is the notion of a proof object: given a
derivation of a proposition inside a formal logic, a proof object is a
term representation of this derivation. A proof checker is a program
that can decide whether a given proof object is a valid derivation
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of a specific proposition or not. Proof objects are extremely ver-
bose and are thus hard to write by hand. For this reason, we use
tactics: functions that produce proof objects. By combining tactics
together, we create proof-producing programs, which we call proof
scripts. If a proof script is evaluated, and the evaluation completes
successfully, the resulting proof object can be checked using the
original proof checker. In this way, the trusted base of the system
is kept at the absolute minimum. The language environment where
proof scripts and tactics are written and evaluated is called a proof
assistant; evidently, it needs to include a proof checker.

Checking proof objects. In order to keep the size of proof objects
manageable, many of the logics used for mechanized proof check-
ing include a conversion rule. This rule is used implicitly by the
proof checker to decide whether any two propositions are equiv-
alent; if it determines that they are indeed so, the proof of their
equivalence can be omitted. We can thus think of it as a special tac-
tic that is embedded within the proof checker, and used implicitly.

The more sophisticated the relation supported by the conversion
rule is, the simpler are proof objects to write, since more details can
be omitted. On the other hand, the proof checker becomes more
complicated, as does the metatheory proof showing the soundness
of the associated logic. The choice in Coq [Barras et al. 2010],
one of the most widely used proof assistants, with respect to this
trade-off, is to have a conversion rule that identifies propositions
up to evaluation. Nevertheless, extended notions of conversion are
desirable, leading to proposals like CogMT [Strub 2010], where
equivalence up to first-order theories is supported. In both cases,
the conversion rule is fixed, and extending it requires significant
amounts of work. It is thus not possible for users to extend it using
their own, domain-specific tactics, and proof objects are thus bound
to get large. This is why we have to resort to writing proof scripts.

Checking proof scripts.  As mentioned earlier, in order to validate
a proof script we need to evaluate it (see Fig. la); this is the
modus operandi in proof assistants of the HOL family [Harrison
1996; Slind and Norrish 2008]. Therefore, it is easy to extend the
checking procedure for proof scripts by writing a new tactic, and
calling it as part of a script. The price that this comes to is that there
is no way to have any sort of static guarantee about the validity
of the script, as proof scripts are completely untyped. This can be
somewhat mitigated in Coq by utilizing the static checking that it
already supports: the proof checker, and especially, the conversion
rule it contains (see Fig. 1b). We can employ proof objects in
our scripts; this is especially useful when the proof objects are
trivial to write but trigger complex conversion checks. This is the
essential idea behind techniques like proof-by-reflection [Boutin
1997], which lead to more robust proof scripts.

In previous work [Stampoulis and Shao 2010] we introduced
VeriML, a language that enables programming tactics and proof
scripts in a typeful manner using a general-purpose, side-effectful
programming model. Combining typed tactics leads to typed proof
scripts. These are still programs producing proof objects, but the
proposition they prove is carried within their type. Information
about the current proof state (the set of hypotheses and goals) is also
available statically at every intermediate point of the proof script. In
this way, the static assurances about proof scripts are significantly
increased and many potential sources of type errors are removed.
On the other hand, the proof objects contained within the scripts
are still checked using a fixed proof checker; this ultimately means
that the set of possible static guarantees is still fixed.

Extensible conversion rule. In this paper, we build on our earlier
work on VeriML. In order to further increase the amount of static
checking of proof scripts that is possible within this language, we
propose the notion of an extensible conversion rule (see Fig. 1c). It
enables users to write their own domain-specific conversion checks
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that get included in the conversion rule. This leads to simpler proof
scripts, as more parts of the proof can be inferred by the conversion
rule and can therefore be omitted. Also, it leads to increased static
guarantees for proof scripts, since the conversion checks happen
before the rest of the proof script is evaluated.

The way we achieve this is by programming the conversion
checks as type-safe tactics within VeriML, and then evaluating
them statically using a simple staging mechanism (see Fig. 2). The
type of the conversion tactics requires that they produce a proof ob-
ject which proves the claimed equivalence of the propositions. In
this way, type safety of VeriML guarantees that soundness is main-
tained. At the same time, users are free to extend the conversion
rule with their own conversion tactics written in a familiar program-
ming model, without requiring any metatheoretic additions or ter-
mination proofs. Such proofs are only necessary if decidability of
the extra conversion checks is desired. Furthermore, this approach
allows for metatheoretic reductions as the original conversion rule
can be programmed within the language. Thus it can be removed
from the logic, and replaced by the simpler notion of explicit equal-
ities, leading to both simpler metatheory and a smaller trusted base.

Checking tactics. The above approach addresses the issue of
being able to extend the amount of static checking possible for
proof scripts. But what about tactics? Our existing work on VeriML
shows how the increased type information addresses some of the
issues of tactic development using current proof assistants, where
tactics are programmed in a completely untyped manner.

Still, if we consider the case of tactics more closely, we will
see that there is a limitation to the amount of checking that is
done statically, even using this language. When programming a
new tactic, we would like to reuse existing tactics to produce the
required proofs. Therefore, rather than writing proof objects by
hand inside the code of a tactic, we would rather use proof scripts.
The issue is that in order to check whether the contained proof
scripts are valid, they need to be evaluated — but this only happens
when an invocation of the tactic reaches the point where the proof
script is used. Therefore, the static guarantees that this approach
provides are severely limited by the fact that the proof scripts inside
the tactics cannot be checked statically, when the tactic is defined.

Static proof scripts.  This is the second fundamental issue we ad-
dress in this paper. We show that the same staging construct uti-
lized for introducing the extensible conversion rule, can be lever-
aged to perform static proof checking for tactics. The crucial point
of our approach is the proof of existence of a transformation be-
tween proof objects, which suggests that under reasonable condi-
tions, a proof script contained within a tactic can be transformed
into a static proof script. This static script can then be evaluated at
tactic definition time, to be checked for validity.

Last, we will show that this approach lends itself well to writing
extensions of the conversion rule. We show that we can create a lay-
ering of conversion rules: using a basic conversion rule as a starting
point, we can utilize it inside static proof scripts to implicitly prove
the required obligations of a more advanced version, and so on.
This minimizes the required user effort for writing new conversion
rules, and enables truly modular proof checking.
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t ::= proof object constructors | propositions
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main judgement: ¥; ®1:1  (type of a logical term)

Figure 3. Assumptions about the logic language

3. Our toolbox

In this section, we will present the essential ingredients that are
needed for the rest of our development. The main requirement is
a language that supports type-safe manipulation of terms of a par-
ticular logic, as well as a general-purpose programming model that
includes general recursion and other side-effectful operations. Two
recently proposed languages for manipulating LF terms, Beluga
[Pientka and Dunfield 2008] and Delphin [Poswolsky and Schiir-
mann 2008], fit this requirement, as does VeriML [Stampoulis and
Shao 2010], which is a language used to write type-safe tactics. Our
discussion is focused on the latter, as it supports a richer ML-style
calculus compared to the others, something useful for our purposes.
Still, our results apply to all three.

We will now briefly describe the constructs that these languages
support, as well as some new extensions that we propose. The
interested reader can read more about these constructs in Sec. 6
and in our technical report [Stampoulis and Shao 2012].

A formal logic. The computational language we are presenting is
centered around manipulation of terms of a specific formal logic.
We will see more details about this logic in Sec. 4. For the time
being, it will suffice to present a set of assumptions about the syn-
tactic classes and typing judgements of this logic, shown in Fig. 3.
Logical terms are represented by the syntactic class ¢, and include
proof objects, propositions, terms corresponding to the domain of
discourse (e.g. natural numbers), and the needed sorts and type con-
structors to classify such terms. Their variables are assigned types
through an ordered context ®. A package of a logical term ¢ to-
gether with the variables context it inhabits @ is called a contex-
tual term and denoted as 7 = [®]¢. Our computational language
works over contextual terms for reasons that will be evident later.
The logic incorporates such terms by allowing them to get substi-
tuted for meta-variables X, using the constructor X /6. When a term
T = [@']1 gets substituted for X, we go from the &’ context to the
current context & using the substitution G.

Logical terms are classified using other logical terms, based on
the normal variables environment @, and also an environment ¥
that types meta-variables, thus leading to the ¥; @ I~ ¢ : ¢’ judge-
ment. For example, a term ¢ representing a closed proposition will
be typed as o; o |- 7 : Prop, while a proof object #,¢ proving that
proposition will satisfy the judgement e; o 1,7 : 7.

ML-style functional programming. We move on to the compu-
tational language. As its main core, we assume an ML-style func-
tional language, supporting general recursion, algebraic data types
and mutable references (see Fig. 4). Terms of this fragment are
typed under a computational variables environment I" and a store
typing environment ¥, mapping mutable locations to types. Typing
judgements are entirely standard, leading to a X; I' - ¢ : T judge-
ment for typing expressions.

Dependently-typed programming over logical terms. As shown
in Fig. 5, the first important additions to the ML computational core
are constructs for dependent functions and products over contextual
terms 7. Abstraction over contextual terms is denoted as AX : T.e. It
has the dependent function type (X : T') — t. The type is dependent
since the introduced logical term might be used as the type of
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Figure 5. Syntax for the computational language (logical term
constructs)

another term. An example would be a function that receives a
proposition plus a proof object for that proposition, with type:
(P : Prop) — (X : P) — 1. Dependent products that package a
contextual logical term with an expression are introduced through
the (T, e) construct and eliminated using let (X, x) = e in ¢’; their
type is denoted as (X : T') x t. Especially for packages of proof
objects with the unit type, we introduce the syntax LT(T').

Last, in order to be able to support functions that work over
terms in any context, we introduce context polymorphism, through
a similarly dependent function type over contexts. With these in
mind, we can define a simple tactic that gets a packaged proof
of a universally quantified formula, and an instantiation term, and
returns a proof of the instantiated formula as follows:

instantiate : (¢ : ctx, 7 : [0] Type, P: [0, x: T]Prop, a: [0]T) —
LT([¢] Vx: T,P) — LT([¢] P/[idy, a)

instantiate 7 P a pf =let (H) =pfin (H a)

From here on, we will omit details about contexts and substitutions
in the interest of presentation.

Pattern matching over terms. The most important new construct
that VeriML supports is a pattern matching construct over logical
terms denoted as holcase. This construct is used for dependent
matching of a logical term against a set of patterns. The return
clause specifies its return type; we omit it when it is easy to infer.
Patterns are normal terms that include unification variables, which
can be present under binders. This is the essential reason why
contextual terms are needed.

Pattern matching over environments. For the purposes of our de-
velopment, it is very useful to support one more pattern matching
construct: matching over logical variable contexts. When trying to
construct a certain proof, the logical environment represents what
the current proof context is: what the current logical hypotheses at
hand are, what types of terms have been quantified over, etc. By be-
ing able to pattern match over the environment, we can “look up”
things in our current set of hypotheses, in order to prove further
propositions. We can thus view the current environment as repre-
senting a simple form of the current proof state; the pattern match-
ing construct enables us to manipulate it in a type-safe manner.
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One example is an “assumption” tactic, that tries to prove a
proposition by searching for a matching hypotheses in the context:

assumption : (0 : ctx, P : Prop) — option LT(P)
assumption ¢ P =
ctxcase ¢ of
¢, H: P return (H)
|¢', _ > assumption ¢’ P

Proof object erasure semantics (new feature). The only con-
struct that can influence the evaluation of a program based on the
structure of a logical term is the pattern matching construct. For
our purposes, pattern matching on proof objects is not necessary —
we never look into the structure of a completed proof. Thus we can
have the typing rules of the pattern matching construct specifically
disallow matching on proof objects.

In that case, we can define an alternate operational semantics for
our language where all proof objects are erased before using the
original small-step reduction rules. Because of type safety, these
proof-erasure semantics are guaranteed to yield equivalent results:
even if no proof objects are generated, they are still bound to exist.

Implicit arguments. Let us consider again the instantiate func-
tion defined earlier. This function expects five arguments. From its
type alone, it is evident that only the last two arguments are strictly
necessary. The last argument, corresponding to a proof expression
for the proposition Vx : T, P, can be used to reconstruct exactly the
arguments ¢, 7 and P. Furthermore, if we know what the result-
ing type of a call to the function needs to be, we can choose even
the instantiation argument a appropriately. We employ a simple in-
ferrence mechanism so that such arguments are omitted from our
programs. This feature is also crucial in our development in order
to implicitly maintain and utilize the current proof state within our
proof scripts.

Minimal staging support (new feature). Using the language we
have seen so far we are able to write powerful tactics using a
general-purpose programming model. But what if, inside our pro-
grams, we have calls to tactics where all of their arguments are
constant? Presumably, those tactic calls could be evaluated to proof
objects prior to tactic invocation. We could think of this as a form
of generalized constant folding, which has one intriguing benefit:
we can tell statically whether the tactic calls succeed or not.

This paper is exactly about exploring this possibility. Towards
this effect, we introduce a rudimentary staging construct in our
computational language. This takes the form of a letstatic construct,
which binds a static expression to a variable. The static expression
is evaluated during stage one (see Fig. 2), and can only depend on
other static expressions. Details of this construct are presented in
Fig. 11d and also in Sec. 6. After this addition, expressions in our
language have a three-phase lifetime, that are also shown in Fig. 2.

— type-checking, where the well-formedness of expressions ac-
cording to the rules of the language is checked, and inference
of implicit arguments is performed

— static evaluation, where expressions inside letstatic are reduced
to values, yielding a residual expression

— run-time, where the residual expression is evaluated

4. Extensible conversion rule

With these tools at hand, let us now return to the first issue that
motivates us: the fact that proof checking is rigid and cannot be
extended with user-defined procedures. As we have said in our in-
troduction, many modern proof assistants are based on logics that
include a conversion rule. This rule essentially identifies proposi-
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Figure 7. Extending AHOL with the conversion rule (A\AHOL,)

tions up to some equivalence relation: usually this is equivalence up
to partial evaluation of the functions contained within propositions.

The supported relation is decided when the logic is designed.
Any extension to this relation requires a significant amount of work,
both in terms of implementation, and in terms of metatheoretic
proof required. This is evidenced by projects that extend the con-
version rule in Coq, such as Blanqui et al. [1999] and Strub [2010].
Even if user extensions are supported, those only take the form of
first-order theories. Can we do better than this, enabling arbitrarily
complex user extensions, written with the full power of ML, yet
maintaining soundness?

It turns out that we can: this is the subject of this section. The
key idea is to recognize that the conversion rule is essentially a
tactic, embedded within the type checker of the logic. Calls to
this tactic are made implicitly as part of checking a given proof
object for validity. So how can we support a flexible, extensible
alternative? Instead of hardcoding a conversion tactic within the
logic type checker, we can program a type-safe version of the same
tactic within VeriML, with the requirement that it provides proof of
the claimed equivalence. Instead of calling the conversion tactic as
part of proof checking, we use staging to call the tactic statically
— after (VeriML) type checking, but before runtime execution.
This can be viewed as a second, potentially non-terminating proof
checking stage. Users are now free to write their own conversion
tactics, extending the static checking available for proof objects and
proof scripts. Still, soundness is maintained, since full proof objects
in the original logic can always be constructed. As an example,
we have extended the conversion rule that we use by a congruence
closure procedure, which makes use of mutable data structures, and
by an arithmetic simplification procedure.

4.1 Introducing: the conversion rule

First, let us present what the conversion rule really is in more detail.
‘We will base our discussion on a simple type-theoretic higher-order
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Figure 8. Extending AHOL with explicit equality (\HOL,)

logic, based on the AHOL logic as described in Barendregt and
Geuvers [1999], and used in our original work on VeriML [Stam-
poulis and Shao 2010]. We can think of such a logic composed by
the following broad classes: the objects of the domain of discourse
d, which are the objects that the logic reasons about, such as natural
numbers and lists; their classifiers, the kinds X (classified in turn
by sorts s); the propositions P; and the derivations, which prove
that a certain proposition is true. We can represent derivations in
a linear form as terms T in a typed lambda-calculus; we call such
terms proof objects, and their types represent propositions in the
logic. Checking whether a derivation is a valid proof of a certain
proposition amounts to type-checking its corresponding proof ob-
ject. Some details of this logic are presented in Fig. 6; the interested
reader can find more information about it in the above references
and in our technical report [Stampoulis and Shao 2012].

In Fig. 6, we show what the conversion rule looks like for this
logic: it is a typing judgement that effectively identifies proposi-
tions up to an equivalence relation, with respect to checking proof
objects. We call this version of the logic AHOL, and use . to
denote its entailment relation. The equivalence relation we con-
sider in the conversion rule is evaluation up to B-reductions and
uses of primitive recursion of natural numbers, denoted as natElim.
In this way, trivial arguments based on this notion of computa-
tion alone need not be witnessed, as for example is the fact that
(Succ x) +y = Succ (x+y) — when the addition function is defined
by primitive recursion on the first argument. Of course, this is only
a very basic use of the conversion rule. It is possible to omit larger
proofs through much more sophisticated uses. This leads to simpler
proofs and smaller proof objects.

Still, when using this approach, the choice of what relation is
supported by the conversion rule needs to be made during the defi-
nition of the logic. This choice permeates all aspects of the metathe-
ory of the logic. It is easy to see why, even with the tiny fragment
of logic we have introduced. Most typing rules for proof objects in
the logic are similar to the rules —INTRO and —ELIM: they are
syntax-directed. This means that upon seeing the associated proof
object constructor, like Ax : .7t in the case of —INTRO, we can di-
rectly tell that it applies. If all rules were syntax directed, it would



BNequal : (¢:ctx,T : Type,t; : T,tp : T) — option LT(t; =1;)
BNequal ¢ T t1 1, =
holcase whnf ¢ T t1, whnf ¢ T t, of
((ta: T = T)tp), (tc tg)
do (pf;) < PBNequal¢ (T' —T)1t,t,
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requireEqual : (¢ : ctx,T : Type,t; : Tty : T).LT(t; =13)
requireEqual 0 T t1 1, =
match BNequal ¢ T #; t, with Some x — x | None > error

Figure 9. VeriML tactic for checking equality up to f-conversion

be entirely simple to prove that the logic is sound by an inductive
argument: essentially, since no proof constructor for False exists,
there is no valid derivation for False.

In this logic, the only rule that is not syntax directed is exactly
the conversion rule. Therefore, in order to prove the soundness of
the logic, we have to show that the conversion rule does not some-
how introduce a proof of False. This means that proving the sound-
ness of the logic passes essentially through the specific relation we
have chosen for the conversion rule. Therefore, this approach is
foundationally limited from supporting user extensions, since any
new extension would require a new metatheoretic result in order to
make sure that it does not violate logical soundness.

4.2 Throwing conversion away

Since having a fixed conversion rule is bound to fail if we want
it to be extensible, what choice are we left with, but to throw it
away? This radical sounding approach is what we will do here. We
can replace the conversion rule by an explicit notion of equality,
and provide explicit proof witnesses for rewriting based on that
equality. Essentially, all the points where the conversion rule was
alluded to and proofs were omitted, need now be replaced by proof
objects witnessing the equivalence. Some details for the additions
required to the base AHOL logic are shown in Fig. 8, yielding the
AHOL, logic. There are good reasons for choosing this version:
first, the proof checker is as simple as possible, and does not need
to include the conversion checking routine. We could view this
routine as performing proof search over the replacement rules,
so it necessarily is more complicated, especially since it needs
to be relatively efficient. Also, the metatheory of the logic itself
can be simplified. Even when the conversion rule is supported, the
metatheory for the associated logic is proved through the explicit
equality approach; this is because model construction for a logic
benefits from using explicit equality [Siles and Herbelin 2010].

Still, this approach has a big disadvantage: the proof objects
soon become extremely large, since they include painstakingly de-
tailed proofs for even the simplest of equivalences. This precludes
their use as independently checkable proof certificates that can be
sent to a third party. It is possible that this is one of the reasons
why systems based on logics with explicit equalities, such as HOL4
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whnf: (¢:ctx,7 : Type,t: T) — (¢ : T) x LT(t =1')
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Figure 10. VeriML tactic for rewriting to weak head-normal form

[Slind and Norrish 2008] and Isabelle/HOL [Nipkow et al. 2002],
do not generate proof objects by default.

4.3 Getting conversion back

We will now see how it is possible to reconcile the explicit equality
based approach with the conversion rule: we will gain the conver-
sion rule back, albeit it will remain completely outside the logic.
Therefore we will be free to extend it, all the while without risking
introducing unsoundness in the logic, since the logic remains fixed
(AHOL, as presented above).

We do this by revisiting the view of the conversion rule as a
special “trusted” tactic, through the tools presented in the previous
section. First, instead of hardcoding a conversion tactic in the type
checker, we program a type-safe conversion tactic, utilizing the
features of VeriML. Based on typing alone we require that it returns
a valid proof of the claimed equivalences:

BNequal: (¢ :ctx, T : Type, t: T, t' : T) — option LT(t =¢)

Second, we evaluate this tactic under proof erasure semantics. This
means that no proof objects are produced, leading to the same space
gains as the original conversion rule. Third, we use the staging
construct in order to check conversion statically.

Details. We now present our approach in more detail. First, in
Fig. 9, we show a sketch of the code behind the type-safe conver-
sion check tactic. It works by first rewriting its input terms into
weak head-normal form, via the whnf function in Fig. 10, and then
recursively checking their subterms for equality. In the equivalence
checking function, more cases are needed to deal with quantifi-
cation; while in the rewriting procedure, a recursive call is miss-
ing, which would complicate our presentation here. We also de-
fine a version of the tactic that raises an error instead of returning
an option type if we fail to prove the terms equal, which we call
requireEqual. The full details can be found in our implementation.

The code of the BNequal tactic is in fact entirely similar to
the code one would write for the conversion check routine inside
a logic type checker, save for the extra types and proof objects. It
therefore follows trivially that everything that holds for the standard
implementation of the conversion check also holds for this code:
e.g. it corresponds exactly to the =py relation as defined in the
logic; it is bound to terminate because of the strong normalization
theorem for this relation; and its proof-erased version is at least as
trustworthy as the standard implementation.

Furthermore, given this code, we can produce a form of typed
proof scripts inside VeriML that correspond exactly to proof objects
in the logic with the conversion rule, both in terms of their actual
code, and in terms of the steps required to validate them. This is



done by constructing a proof script in VeriML by induction on
the derivation of the proof object in AHOL,, replacing each proof
object constructor by an equivalent VeriML tactic as follows:

constructor to tactic of type

Ax:Pm Assumee [ LT([0, H:P[P)—LT(P—P)

T T Apply e ey | LT(P — P') — LT(P) — LT(P)

Ax: K. Intro e LT([0, x: T]P") — LT(Vx: T,P")

nd Inste a LT(Vx:T,P) = (a:T) —
LT(P/id, a])

c Lift ¢ (H:P)—LT(P)

(conversion) | Conversion | LT(P) — LT(P=P') — LT(P")

Here we have omitted the current logical environment ¢; it is
maintained through syntactic means as discussed in Sec. 7 and
through type inference. The only subtle case is conversion. Given
the transformed proof e for the proof object w contained within a
use of the conversion rule, we call the conversion tactic as follows:

letstatic pf = requireEqual P P’ in Conversion e pf

The arguments to requireEqual can be easily inferred, making cru-
cial use of the rich type information available. Conversion could
also be used implicitly in the other tactics. Thus the resulting ex-
pression looks entirely identical to the original proof object.

Correspondence with original proof object. In order to elucidate
the correspondence between the resulting proof script expression
and the original proof object, it is fruitful to view the proof script
as a proof certificate, sent to a third party. The steps required to
check whether it constitutes a valid proof are the following. First,
the whole expression is checked using the type checker of the com-
putational language. Then, the calls to the requireEqual function are
evaluated during stage one, using proof erasure semantics. We ex-
pect them to be successful, just as we would expect the conversion
rule to be applicable when it is used. Last, the rest of the tactics
are evaluated; by a simple argument, based on the fact that they do
not use pattern matching or side-effects, they are guaranteed to ter-
minate and produce a proof object in AHOL,. This validity check
is entirely equivalent to the behavior of type-checking the AHOL,
proof object, save for pushing all conversion checks towards the
end.

4.4 Extending conversion at will

In our treatment of the conversion rule we have so far focused
on regaining the BN conversion in our framework. Still, there is
nothing confining us to supporting this conversion check only. As
long as we can program a conversion tactic in VeriML that has the
right type, it can safely be made part of our conversion rule.

For example, we have written an eufEqual function, which
checks terms for equivalence based on the equality with uninter-
preted functions decision procedure. It is adapted from our previous
work on VeriML [Stampoulis and Shao 2010]. This equivalence
checking tactic isolates hypotheses of the form d; = dp from the
current context, using the newly-introduced context matching sup-
port. Then, it constructs a union-find data structure in order to form
equivalence classes of terms. Based on this structure, and using
code similar to BNequal (recursive calls on subterms), we can de-
cide whether two terms are equal up to simple uses of the equality
hypotheses at hand. We have combined this tactic with the original
BNequal tactic, making the implicit equivalence supported similar
to the one in the Calculus of Congruent Constructions [Blanqui
et al. 2005]. This demonstrates the flexibility of this approach:
equivalence checking is extended with a sophisticated decision
procedure, which is programmed using its original, imperative for-
mulation. We have programmed both the rewriting procedure and
the equality checking procedure in an extensible manner, so that
we can globally register further extensions.
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4.5 Typed proof scripts as certificates

Earlier we discussed how we can validate the proof scripts resulting
from turning the conversion rule into explicit tactic calls. This
discussion shows an interesting aspect of typed proof scripts: they
can be viewed as a proof witness that is a flexible compromise
between untyped proof scripts and proof objects. When a typed
proof script consists only of static calls to conversion tactics and
uses of total tactics, it can be thought of as a proof object in a
logic with the corresponding conversion rule. When it also contains
other tactics, that perform potentially expensive proof search, it
corresponds more closely to an untyped proof script, since it needs
to be fully evaluated. Still, we are allowed to validate parts of
it statically. This is especially useful when developing the proof
script, because we can avoid the evaluation of expensive tactic calls
while we focus on getting the skeleton of the proof correct.

Using proof erasure for evaluating requireEqual is only one
of the choices the receiver of such a proof certificate can make.
Another choice would be to have the function return an actual proof
object, which we can check using the AHOL, type checker. In that
case, the VeriML interpreter does not need to become part of the
trusted base of the system. Last, the ‘safest possible’ choice would
be to avoid doing any evaluation of the function, and ask the proof
certificate provider to do the evaluation of requireEqual themselves.
In that case, no evaluation of computational code would need to
happen at the proof certificate receiver’s side. This mitigates any
concerns one might have for code execution as part of proof validity
checking, and guarantees that the small AHOL, type checker is the
trusted base in its entirety. Also, the receiver can decide on the
above choices selectively for different conversion tactics — e.g. use
proof erasure for BNequal but not for eufEqual, leading to a trusted
base identical to the AHOL, case. This means that the choice of
the conversion rule rests with the proof certificate receiver and not
with the designer of the logic. Thus the proof certificate receiver
can choose the level of trust they require at will.

5. Static proof scripts

In the previous section, we have demonstrated how proof checking
for typed proof scripts can be made user-extensible, through a
new treatment of the conversion rule. It makes use of user-defined,
type-safe tactics, which are evaluated statically. The question that
remains is what happens with respect to proofs within tactics. If
a proof script is found within a tactic, must we wait until that
evaluation point is reached to know whether the proof script is
correct or not? Or is there a way to check this statically, as soon
as the tactic is defined?

In this section we show how this is possible to do in VeriML
using the staging construct we have introduced. Still, in this case
matters are not as simple as evaluating certain expressions statically
rather than dynamically. The reason is that proof scripts contained
within tactics mention uninstantiated meta-variables, and thus can-
not be evaluated through staging. We resolve this by showing the
existence of a transformation, which “collapses” logical terms from
an arbitrary meta-variables context into the empty one.

We will focus on the case of developing conversion routines,
similar to the ones we saw earlier. The ideas we present are gen-
erally applicable when writing other types of tactics as well; we
focus on conversion routines in order to demonstrate that the two
main ideas we present in this paper can work in tandem.

A rewriter for plus. We will consider the case of writing a
rewriter —similar to whnf— for simplifying expressions of the form
x+y, depending on the second argument. The addition function is
defined by induction on the first argument, as follows:

(4) = Ax.Ay.natElimngt y (Ap.Ar.Suce r) x



In order for rewriters to be able to use existing as well as future
rewriters to perform their recursive calls, we write them in the
open recursion style — they receive a function of the same type that
corresponds to the “current” rewriter. The code looks as follows:

rewriterType = (¢ : ctx, T : Type,t : T) — (¢ : T) x LT(t =)
plusRewriter1 : rewriterType — rewriterType
plusRewriter1 recursive ¢ T t = holcase t with
xX+y—
let (y/, (pfy’)) = recursive ¢ y in
let (t', (pft')) =
holcase y' return X¢' : [0] Nat.LT([¢]x +y" =1') of
0 — (x,--- proof of x+0=x---)
| Succy’ <Succ(x+y’),

-+ proof of x+ Succy = Succ (x+y') >
ly = (x4, proofof x+y =x+y )

in(t’, (--- proofof x+y=1t"---))
|t~ (t,--- proofof t=t---)

/

While developing such a tactic, we can leverage the VeriML
type checker to know the types of missing proofs. But how do we
fill them in? For the interesting cases of x40 = x and x4 Succ y’ =
Succ (x+y'), we would certainly need to prove the corresponding
lemmas. But for the rest of the cases, the corresponding lemmas
would be uninteresting and tedious to state, such as the following
for the x+y =1 case:

lemmal : Vx,y,y t' y=y — (x+y =t') 5 x+y=t

Stating and proving such lemmas soon becomes a hindrance when
writing tactics. An alternative is to use the congruence closure
conversion rule to solve this trivial obligation for us directly at the
point where it is required. Our first attempt would be:

proof of x+y =1 =
let (pf) = requireEqual [0,H; :y=Y Hy:x+y =1] (x+y) ¢
in ([0]pf/lidy, pfy’, pft])

The benefit of this approach is evident when utilizing implicit argu-
ments, since most of the details can be inferred and therefore omit-
ted. Here we had to alter the environment passed to requireEqual,
which includes several extra hypotheses. Once the resulting proof
has been computed, the hypotheses are substituted by the actual
proofs that we have.

The problem with this approach is two-fold: first, the call to the
requireEqual tactic is recomputed every time we reach that point of
our function. For such a simple tactic call, this does not impact the
runtime significantly; still, if we could avoid it, we would be able
use more sophisticated and expensive tactics. The second problem
is that if for some reason the requireEqual is not able to prove what
it is supposed to, we will not know until we actually reach that point
in the function.

Moving to static proofs. This is where using the letstatic construct
becomes essential. We can evaluate the call to requireEqual stat-
ically, during stage one interpretation. Thus we will know at the
time that plusRewriter1 is defined whether the call succeeded; also,
it will be replaced by a concrete value, so it will not affect the run-
time behavior of each invocation of plusRewriter1 anymore. To do
that, we need to avoid mentioning any of the metavariables that are
bound during runtime, like x, y, and #’. This is done by specifying
an appropriate environment in the call to requireEqual, similarly to
the way we incorporated the extra knowledge above and substituted
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it later. Using this approach, we have:

proof of x +y=1¢'
letstatic (pf) =
leto' = [x,y,y,t :Nat,H; :y =y Hy:x+y =¢]in
requireEqual ¢’ (x+y) ¢’
in ([0] pf/[x/idy,y/idg, Y /idg, 1’ /idy, pfy’ /idy, pft’ /idg])

What we are essentially doing here is replacing the meta-
variables by normal logical variables, which our tactics can deal
with. The meta-variable context is “collapsed” into a normal con-
text; proofs are constructed using tactics in this environment; last,
the resulting proofs are transported back into the desired context by
substituting meta-variables for variables. We have explicitly stated
the substitutions in order to distinguish between normal logical
variables and meta-variables.

The reason why this transformation needs to be done is that
functions in our computational language can only manipulate logi-
cal terms that are open with respect to a normal variables context;
not logical terms that are open with respect to the meta-variables
context too. A much more complicated, but also more flexible al-
ternative to using this “collapsing” trick would be to support meta-
n-variables within our computational language directly.

Overall, this approach is entirely similar to proving the auxiliary
lemma mentioned above, prior to the tactic definition. The benefit
is that by leveraging the type information together with type in-
ference, we can avoid stating such lemmas explicitly, while retain-
ing the same runtime behavior. We thus end up with very concise
proof expressions that are statically validated. We introduce syn-
tactic sugar for binding a static proof script to a variable, and then
performing a substitution to bring it into the current context, since
this is a common operation.

(€)gaiic = letstatic (pf) = ein ([¢]pf/---)

Based on these, the trivial proofs in the above tactic can be filled
in using a simple (requireEqual) ;. call; for the other two we use
(Instantiate (NatInduction requireEqual requireEqual) x) ic-

After we define plusRewriter!, we can register it with the
global equivalence checking procedure. Thus, all later calls to
requireEqual will benefit from this simplification. It is then sim-
ple to prove commutativity for addition:

plusComm
plusComm =

LT(Vx,yx+y=y+x)
NatInduction requireEqual requireEqual

Based on this proof, we can write a rewriter that takes commu-
tativity into account and uses the hash values of logical terms to
avoid infinite loops. We have worked on an arithmetic simplifica-
tion rewriter that is built by layering such rewriters together, using
previous ones to aid us in constructing the proofs required in later
ones. It works by converting expressions into a list of monomi-
als, sorting the list based on the hash values of the variables, and
then factoring monomials on the same variable. Also, the eufEqual
procedure mentioned earlier has all of its associated proofs auto-
mated through static proof scripts, using a naive, potentially non-
terminating, equality rewriter.

Is collapsing always possible? A natural question to ask is
whether collapsing the metavariables context into a normal context
is always possible. In order to cast this as a more formal ques-
tion, we notice that the essential step is replacing a proof object 7
of type [®]z, typed under the meta-variables environment \P, by a
proof object T of type [®']#’ typed under the empty meta-variables
environment. There needs to be a substitution so that T’ gets trans-
ported back to the ®, W environment, and has the appropriate type.
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(d) Computational language: staging support

Figure 11. Main definitions in metatheory
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We have proved that this is possible under certain restrictions:
the types of the metavariables in the current context need to depend
on the same free variables context ®p,x, or prefixes of that context.
Also the substitutions they are used with need to be prefixes of
the identity substitution for ®p,«. Such terms are characterized as
collapsible. We have proved that collapsible terms can be replaced
using terms that do not make use of metavariables; more details
can be found in Sec. 6 and in the accompanying technical report
[Stampoulis and Shao 2012].

This restriction corresponds very well to the treatment of vari-
able contexts in the Delphin language. This language assumes an
ambient context of logical variables, instead of full, contextual
modal terms. Constructs to extend this context and substitute a spe-
cific variable exist. If this last feature is not used, the ambient con-
text grows monotonically and the mentioned restriction holds triv-
ially. In our tests, this restriction has not turned out to be limiting.

6. Metatheory

We have completed an extensive reworking of the metatheory of
VeriML, in order to incorporate the features that we have presented
in this paper. Our new metatheory includes a number of techni-
cal advances compared to our earlier work [Stampoulis and Shao
2010]. We will present a technical overview of our metatheory in
this section; full details can be found in our technical report [Stam-
poulis and Shao 2012].

Variable representation technique. Though our metatheory is
done on paper, we have found that using a concrete variable repre-
sentation technique elucidates some aspects of how different kinds
of substitutions work in our language, compared to having nor-
mal named variables. For example, instantiating a context variable
with a concrete context triggers a set of potentially complicated
a-renamings, which a concrete representation makes explicit. We
use a hybrid technique representing bound variables as deBruijn in-
dices, and free variables as deBruijn levels. Our technique is a small
departure from the named approach, requiring fewer extra annota-
tions and lemmas than normal deBruijn indices. Also it identifies
terms not only up to a-equivalence, but also up to extension of the
context with new variables; this is why it is also used within the Ver-
iML implementation.The two fundamental operations of this tech-
nique are freshening and binding, which are shown in Fig. 11a.

Extension variables. 'We extend the logic with support for meta-
variables and context variables — we refer to both these sorts of
variables as extension variables. A meta-variable X; stands for a
contextual term T = [®]¢, which packages a term together with
the context it inhabits. Context variables ¢; stand for a context P,
and are used to “weaken” parametric contexts in specific positions.
Both kinds of variables are needed to support manipulation of open
logical terms. Details of their definition and typing are shown in
Fig. 11b. We use the same hybrid approach as above for represent-
ing these variables. A somewhat subtle aspect of this extension is
that we generalize the deBruijn levels I used to index free variables,
in order to deal effectively with parametric contexts.

Substitutions. The hybrid representation technique we use for
variables renders simultaneous substitutions for all variables in
scope as the most natural choice. In Fig. 11c, we show some ex-
ample rules of how to apply a full simultaneous substitution ¢ to a
term ¢, denoted as 7 - 6. Similarly, we define full simultaneous sub-
stitutions Gy for extension contexts; defining their application has
a very natural description, because of our variable representation
technique. We prove a number of substitution lemmas which have
simple statements, as shown in Fig. 11c. The proofs of these lem-
mas comprise the main effort required in proving the type-safety
of a computational language such as the one we support, as they
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represent the point where computation specific to logical term ma-
nipulation takes place.

Computational language. We define an ML-style computational
language that supports dependent functions and dependent pairs
over contextual terms 7', as well as pattern matching over them.
Lack of space precludes us from including details here; full details
can be found in the accompanying technical report [Stampoulis and
Shao 2012]. A fairly complete ML calculus is supported, with mu-
table references and recursive types. Type safety is proved using
standard techniques; its central point is extending the logic sub-
stitution lemmas to expressions and using them to prove progress
and preservation of dependent functions and dependent pairs. This
proof is modular with respect to the logic and other logics can eas-
ily be supported.

Pattern matching. Our metatheory includes many extensions in
the pattern matching that is supported, as well as a new approach for
dealing with typing patterns. We include support for pattern match-
ing over contexts (e.g. to pick out hypotheses from the context) and
for non-linear patterns. The allowed patterns are checked through a
restriction of the usual typing rules W+, T : K.

The essential idea behind our approach to pattern matching
is to identify what the relevant variables in a typing derivation
are. Since contexts are ordered, “removing” non-relevant variables
amounts to replacing their definitions in the context with holes,
which leads us to partial contexts ¥. The corresponding notion
of partial substitutions is denoted as Gy. Our main theorem about
pattern matching can then be stated as:

Theorem 6.1 (Decidability of pattern matching) If ¥ I-, T : K,
o, T’ : K and relevant(¥; ®+T :K) = U, then cither there

exists a unique partial substitution Gy such that e - &y : ¥ and
T -6y = T', or no such substitution exists.

Staging. Our development in this paper critically depends on the
letstatic construct we presented earlier. It can be seen as a dual of
the traditional box construct of Davies and Pfenning [1996]. De-
tails of its typing and semantics are shown in Fig. 11d. We define a
notion of “static evaluation contexts” 8, which enclose a hole of the
form letstatic x = e in e. They include normal evaluation contexts,
as well as evaluation contexts under binding structures. We evaluate
expressions e that include staging constructs using the — rela-
tion; internally, this uses the normal evaluation rules, that are used
in the second stage as well, for evaluating expressions which do
not include other staging constructs. If stage-one evaluation is suc-
cessful, we are left with a residual dynamic configuration (¢, ey)
which is then evaluated normally. We prove type-safety for stage-
one evaluation; its statement follows.

Theorem 6.2 (Stage-one Type Safety) If o; X; ¢ - ¢ : T then: ei-
ther e is a dynamic expression ey; or, for every store u such that
F u: X, we have: either u,e —s error, or, there exists an €', a new
store typing ¥! D ¥ and a new store i such that: (u,e) — (i ,e');
Fu Y ande;Y ;e e : 1.

Collapsing extension variables. Last, we have proved the fact
that under the conditions described in Sec. 5, it is possible to col-
lapse a term ¢ into a term ¢’ which is typed under the empty exten-
sion variables context; a substitution ¢ with which we can regain
the original term ¢ exists. This suggests that whenever a proof ob-
ject ¢ for a specific proposition is required, an equivalent proof ob-
ject that does not mention uninstantiated extension variables exists.
Therefore, we can write an equivalent proof script producing the
collapsed proof object instead, and evaluate that script statically.
The statement of this theorem is the following:

Theorem 6.3 [f\V - [®]7: [®]tr and collapsible (‘P F [®]1 : [®]rr),
then there exist @', t', tj. and G such that e - @ wf, e - [@]¢ :
@), ¥; PrHo: ¥, 1 c=randt}-c=t1y.



The main idea behind the proof is to maintain a number of sub-
stitutions and their inverses: one to go from a general ¥ extension
context into an “equivalent” ¥’ context, which includes only defini-
tions of the form [®]r, for a constant ® context that uses no exten-
sion variables. Then, another substitution and its inverse are main-
tained to go from that extension variables context into the empty
one; this is simpler, since terms typed under ¥’ are already essen-
tially free of metavariables. The computational content within the
proof amounts to a procedure for transforming proof scripts inside
tactics into static proof scripts.

7. Implementation

We have completed a prototype implementation of the VeriML
language, as described in this paper, that supports all of our
claims. We have built on our existing prototype [Stampoulis
and Shao 2010] and have added an extensive set of new fea-
tures and improvements. The prototype is written in OCaml and
is about 6k lines of code. Using the prototype we have imple-
mented a number of examples, that are about 1.5k lines of code.
Readers are encouraged to download and try the prototype from
http://flint.cs.yale.edu/publications/supc.html.

New features. We have implemented the new features we have
described so far: context matching, non-linear patterns, proof-
erasure semantics, staging, and inferencing for logical and com-
putational terms. Proof-erasure semantics are utilized only if re-
quested by a per-function flag, enabling us to selectively “trust”
tactics. The staging construct we support is more akin to the (-) e
form described as syntactic sugar in Sec. 5, and it is able to infer
the collapsing substitutions that are needed, following the approach
used in our metatheory.

Changes. We have also changed quite a number of things in the
prototype and improved many of its aspects. A central change, me-
diated by our new treatment of the conversion rule, was to modify
the used logic in order to use the explicit equality approach; the ex-
isting prototype used the AHOL, logic. We also switched the vari-
able representation to the hybrid deBruijn levels-deBruijn indices
technique we described, which enabled us to implement subtyping
based on context subsumption. Also, we have adapted the typing
rules of the pattern matching construct in order to support refining
the environment based on the current branch.

Examples implemented. We have implemented a number of ex-
amples to support our claims. First, we have written the type-safe
conversion check routine for BN, and extended it to support congru-
ence closure based on equalities in the context. Proofs of this lat-
ter tactic are constructed automatically through static proof scripts,
using a naive rewriter that is non-terminating in the general case.
We have also completed proofs for theorems of arithmetic for the
properties of addition and multiplication, and used them to write an
arithmetic simplification tactic. All of the theorems are proved by
making essential use of existing conversion rules, and are imme-
diately added into new conversion rules, leading to a compact and
clean development style. The resulting code does not need to make
use of translation validation or proof by reflection, which are typi-
cally used to implement similar tactics in existing proof assistants.

Towards a practical proof assistant. In order to facilitate practi-
cal proof and program construction in VeriML, we introduced some
features to support surface syntax, enabling users to omit most de-
tails about the environments of contextual terms and the substi-
tutions used with meta-variables. This syntax follows the style of
Delphin, assuming an ambient logical variable environment which
is extended through a construct denoted as vx : t.e. Still, the full
power of contextual modal type theory is available, which is cru-
cial in order to change what the current ambient environment is,

50

used, as we saw earlier, for static calls to tactics. In general the
surface syntax leads to much more concise and readable code.

Last, we introduced syntax support for calls to tactics, enabling
users to write proof expressions that look very similar to proof
scripts in current proof assistants. We developed a rudimentary
ProofGeneral mode for VeriML, that enables us to call the VeriML
type-checker and interpreter for parts of source files. By adding
holes to our sources, we can be informed by the type inference
mechanism about their expected types. Those types correspond to
what the current “proof state” is at that point. Therefore, a possi-
ble workflow for developing tactics or proofs, is writing the known
parts, inserting holes in missing points to know what remains to
be proved, and calling the typechecker to get the proof state infor-
mation. This workflow corresponds closely to the interactive proof
development support in proof assistants like Coq and Isabelle, but
generalizes it to the case of tactics as well.

8. Related work

There is a large body of work that is related to the ideas we have
presented here.

Techniques for robust proof development. There have been
multiple proposals for making proof development inside existing
proof assistants more robust. A well-known technique is proof-by-
reflection [Boutin 1997]: writing total and certified decision proce-
dures within the functional language contained in a logic like CIC.
A recently introduced technique is automation through canonical
structures [Gonthier et al. 2011]: the resolution mechanism for
finding instances of canonical structures (a generalization of type
classes) is cleverly utilized in order to program automation proce-
dures for specific classes of propositions. We view both approaches
as somewhat similar, as both are based in cleverly exploiting static
“interpreters” that are available in a modern proof assistant: the
partial evaluator within the conversion rule in the former case; the
unification algorithm within instance discovery in the latter case.

Our approach can thus be seen as similar, but also as a gen-
eralization of these approaches, since a general-purpose program-
ming model is supported. Therefore, users do not have to adapt to
a specific programming style for writing automation code, but can
rather use a familiar functional language. Proof-by-reflection could
perhaps be used to support the same kind of extensions to the con-
version rule; still, this would require reflecting a large part of the
logic in itself, through a prohibitively complicated encoding. Both
techniques are applicable to our setting as well and could be used
to provide benefits to large developments within our language.

The style advocated in Chlipala [2011] (and elsewhere) suggests
that proper proof engineering entails developing sophisticated au-
tomation tactics in a modular style, and extending their power by
adding proved lemmas as hints. We are largely inspired by this ap-
proach, and believe that our introduction of the extensible conver-
sion rule and static checking of tactics can significantly benefit it.
We demonstrate similar ideas in layering conversion tactics.

Traditional proof assistants. There are many parallels of our
work with the LCF family of proof assistants, like HOL4 [Slind and
Norrish 2008] and HOL-Light [Harrison 1996], which have served
as inspiration. First, the foundational logic that we use is similar.
Also, our use of a dedicated ML-like programming language to
program tactics and proof scripts is similar to the approach taken
by HOL4 and HOL-Light. Last, the fact that no proof objects need
to be generated is shared. Still, checking a proof script in HOL
requires evaluating it fully. Using our approach, we can selectively
evaluate parts of proof scripts; we focus on conversion-like tactics,
but we are not limited inherrently to those. This is only possible
because our proof scripts carry proof state information within their
types. Similarly, proof scripts contained within LCF tactics cannot



be evaluated statically, so it is impossible to establish their validity
upon tactic definition. It is possible to do a transformation similar to
ours manually (lifting proof scripts into auxiliary lemmas that are
proved prior to the tactic), but the lack of type information means
that many more details need to be provided.

The Coq proof assistant [Barras et al. 2010] is another obvious
point of reference for our work. We will focus on the conversion
rule that CIC, its accompanying logic, supports — the same prob-
lems with respect to proof scripts and tactics that we described in
the LCF case also apply for Coq. The conversion rule, which identi-
fies computationally equivalent propositions, coupled with the rich
type universe available, opens up many possibilities for construct-
ing small and efficiently checkable proof objects. The implementa-
tion of the conversion rule needs to be part of the trusted base of
the proof assistant. Also, the fact that the conversion check is built-
in to the proof assistant makes the supported equivalence rigid and
non-extensible by frequently used decision procedures.

There is a large body of work that aims to extend the conver-
sion rule to arbitrary confluent rewrite systems (e.g. Blanqui et al.
[1999]) and to include decision procedures [Strub 2010]. These
approaches assume some small or larger addition to the trusted
base, and extend the already complex metatheory of Coq. Further-
more, the NuPRL proof assistant [Constable et al. 1986] is based
on extensional type theory which includes an extensional conver-
sion rule. This enables complex decision procedures to be part of
conversion; but it results in a very large trusted base. We show how,
for a subset of these type theories, the conversion check can be re-
covered outside the trusted base. It can be extended with arbitrarily
complex new tactics, written in a familiar programming style, with-
out any metatheoretic additions and without hurting the soundness
of the logic. The question of whether these type theories can be
supported in full remains as future work, but as far as we know,
there is no inherrent limitation to our approach.

Dependently-typed programming. The large body of work on
dependently-typed languages has close parallels to our work. Out
of the multitude of proposals, we consider the Russell framework
[Sozeau 2006] as the current state-of-the-art, because of its high
expressivity and automation in discharging proof obligations. In
our setting, we can view dependently-typed programming as a spe-
cific case of tactics producing complex data types that include
proof objects. Static proof scripts can be leveraged to support ex-
pressivity similar to the Russell framework. Furthermore, our ap-
proach opens up a new intriguing possibility: dependently-typed
programs whose obligations are discharged statically and automat-
ically, through code written within the same language.

Last, we have been largely inspired by the work on languages
like Beluga [Pientka and Dunfield 2008] and Delphin [Poswolsky
and Schiirmann 2008], and build on our previous work on VeriML
[Stampoulis and Shao 2010]. We investigate how to leverage type-
safe tactics, as well as a number of new constructs we introduce, so
as to offer an extensible notion of proof checking. Also, we address
the issue of statically checking the proof scripts contained within
tactics written in VeriML. As far as we know, our development is
the first time languages such as these have been demonstrated to
provide a workflow similar to interactive proof assistants.
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Abstract

Despite recent successes, large-scale proof development within proof assistants remains an arcane art that is
extremely time-consuming. We argue that this can be attributed to two profound shortcomings in the architecture
of modern proof assistants. The first is that proofs need to include a large amount of minute detail; this is due to
the rigidity of the proof checking process, which cannot be extended with domain-specific knowledge. In order
to avoid these details, we rely on developing and using tactics, specialized procedures that produce proofs.
Unfortunately, tactics are both hard to write and hard to use, revealing the second shortcoming of modern proof
assistants. This is because there is no static knowledge about their expected use and behavior.

As has recently been demonstrated, languages that allow type-safe manipulation of proofs, like Beluga,
Delphin and VeriML, can be used to partly mitigate this second issue, by assigning rich types to tactics. Still,
the architectural issues remain. In this paper, we build on this existing work, and demonstrate two novel ideas:
an extensible conversion rule and support for static proof scripts. Together, these ideas enable us to support both
user-extensible proof checking, and sophisticated static checking of tactics, leading to a new point in the design
space of future proof assistants. Both ideas are based on the interplay between a light-weight staging construct
and the rich type information available.

Categories and Subject Descriptors D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms Languages, Verification

1. Introduction

There have been various recent successes in using proof assistants to construct foundational proofs of large
software, like a C compiler [Leroy 2009] and an OS microkernel [Klein et al. 2009], as well as complicated
mathematical proofs [Gonthier 2008]. Despite this success, the process of large-scale proof development using
the foundational approach remains a complicated endeavor that requires significant manual effort and is plagued
by various architectural issues.

The big benefit of using a foundational proof assistant is that the proofs involved can be checked for validity
using a very small proof checking procedure. The downside is that these proofs are very large, since proof
checking is fixed. There is no way to add domain-specific knowledge to the proof checker, which would enable
proofs that spell out less details. There is good reason for this, too: if we allowed arbitrary extensions of the
proof checker, we could very easily permit it to accept invalid proofs.

Because of this lack of extensibility in the proof checker, users rely on tactics: procedures that produce proofs.
Users are free to write their own tactics, that can create domain-specific proofs. In fact, developing domain-
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specific tactics is considered to be good engineering when doing large developments, leading to significantly
decreased overall effort — as shown, e.g. in Chlipala [2011]. Still, using and developing tactics is error-prone.
Tactics are essentially untyped functions that manipulate logical terms, and thus tactic programming is untyped.
This means that common errors, like passing the wrong argument, or expecting the wrong result, are not caught
statically. Exacerbating this, proofs contained within tactics are not checked statically, when the tactic is defined.
Therefore, even if the tactic is used correctly, it could contain serious bugs that manifest only under some
conditions.

With the recent advent of programming languages that support strongly typed manipulation of logical
terms, such as Beluga [Pientka and Dunfield 2008], Delphin [Poswolsky and Schiirmann 2008] and VeriML
[Stampoulis and Shao 2010], this situation can be somewhat mitigated. It has been shown in Stampoulis and
Shao [2010] that we can specify what kinds of arguments a tactic expects and what kind of proof it produces,
leading to a type-safe programming style. Still, this does not address the fundamental problem of proof checking
being fixed — users still have to rely on using tactics. Furthermore, the proofs contained within the type-safe
tactics are in fact proof-producing programs, which need to be evaluated upon invocation of the tactic. Therefore
proofs within tactics are not checked statically, and they can still cause the tactics to fail upon invocation.

In this paper, we build on the past work on these languages, aiming to solve both of these issues regarding
the architecture of modern proof assistants. We introduce two novel ideas: support for an extensible conversion
rule and static proof scripts inside tactics. The former technique enables proof checking to become user-
extensible, while maintaining the guarantee that only logically sound proofs are admitted. The latter technique
allows for statically checking the proofs contained within tactics, leading to increased guarantees about their
runtime behavior. Both techniques are based on the same mechanism, which consists of a light-weight staging
construct. There is also a deep synergy between them, allowing us to use the one to the benefit of the other.

Our main contributions are the following:

e First, we present what we believe is the first technique for having an extensible conversion rule, which
combines the following characteristics: it is safe, meaning that it preserves logical soundness; it is user-
extensible, using a familiar, generic programming model; and, it does not require metatheoretic additions to
the logic, but can be used to simplify the logic instead.

¢ Second, building on existing work for typed tactic development, we introduce static checking of the proof
scripts contained within tactics. This significantly reduces the development effort required, allowing us to
write tactics that benefit from existing tactics and from the rich type information available.

¢ Third, we show how typed proof scripts can be seen as an alternative form of proof witness, which falls
between a proof object and a proof script. Receivers of the certificate are able to decide on the tradeoff
between the level of trust they show and the amount of resources needed to check its validity.

In terms of technical contributions, we present a number of technical advances in the metatheory of
the aforementioned programming languages. These include a simple staging construct that is crucial to our
development and a new technique for variable representation. We also show a condition under which static
checking of proof scripts inside tactics is possible. Last, we have extended an existing prototype implementation
with a significant number of features, enabling it to support our claims, while also rendering its use as a proof
assistant more practical.

2. Informal presentation

Glossary of terms. We will start off by introducing some concepts that will be used throughout the paper. The
first fundamental concept we will consider is the notion of a proof object:. given a derivation of a proposition
inside a formal logic, a proof object is a term representation of this derivation. A proof checker is a program
that can decide whether a given proof object is a valid derivation of a specific proposition or not. Proof objects
are extremely verbose and are thus hard to write by hand. For this reason, we use factics: functions that produce
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Figure 1. Checking proof scripts in various proof assistants

proof objects. By combining tactics together, we create proof-producing programs, which we call proof scripts.
If a proof script is evaluated, and the evaluation completes successfully, the resulting proof object can be checked
using the original proof checker. In this way, the trusted base of the system is kept at the absolute minimum.
The language environment where proof scripts and tactics are written and evaluated is called a proof assistant;

evidently, it needs to include a proof checker.

Checking proof objects.

and used implicitly.
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In order to keep the size of proof objects manageable, many of the logics used for
mechanized proof checking include a conversion rule. This rule is used implicitly by the proof checker to
decide whether any two propositions are equivalent; if it determines that they are indeed so, the proof of their
equivalence can be omitted. We can thus think of it as a special tactic that is embedded within the proof checker,



The more sophisticated the relation supported by the conversion rule is, the simpler are proof objects to write,
since more details can be omitted. On the other hand, the proof checker becomes more complicated, as does
the metatheory proof showing the soundness of the associated logic. The choice in Coq [Barras et al. 2010],
one of the most widely used proof assistants, with respect to this trade-off, is to have a conversion rule that
identifies propositions up to evaluation. Nevertheless, extended notions of conversion are desirable, leading to
proposals like CogMT [Strub 2010], where equivalence up to first-order theories is supported. In both cases, the
conversion rule is fixed, and extending it requires significant amounts of work. It is thus not possible for users
to extend it using their own, domain-specific tactics, and proof objects are thus bound to get large. This is why
we have to resort to writing proof scripts.

Checking proof scripts. As mentioned earlier, in order to validate a proof script we need to evaluate it (see Fig.
1a); this is the modus operandi in proof assistants of the HOL family [Harrison 1996; Slind and Norrish 2008].
Therefore, it is easy to extend the checking procedure for proof scripts by writing a new tactic, and calling
it as part of a script. The price that this comes to is that there is no way to have any sort of static guarantee
about the validity of the script, as proof scripts are completely untyped. This can be somewhat mitigated in Coq
by utilizing the static checking that it already supports: the proof checker, and especially, the conversion rule
it contains (see Fig. 1b). We can employ proof objects in our scripts; this is especially useful when the proof
objects are trivial to write but trigger complex conversion checks. This is the essential idea behind techniques
like proof-by-reflection [Boutin 1997], which lead to more robust proof scripts.

In previous work [Stampoulis and Shao 2010] we introduced VeriML, a language that enables programming
tactics and proof scripts in a typeful manner using a general-purpose, side-effectful programming model.
Combining typed tactics leads to typed proof scripts. These are still programs producing proof objects, but
the proposition they prove is carried within their type. Information about the current proof state (the set of
hypotheses and goals) is also available statically at every intermediate point of the proof script. In this way, the
static assurances about proof scripts are significantly increased and many potential sources of type errors are
removed. On the other hand, the proof objects contained within the scripts are still checked using a fixed proof
checker; this ultimately means that the set of possible static guarantees is still fixed.

Extensible conversion rule. In this paper, we build on our earlier work on VeriML. In order to further increase
the amount of static checking of proof scripts that is possible within this language, we propose the notion of an
extensible conversion rule (see Fig. 1c). It enables users to write their own domain-specific conversion checks
that get included in the conversion rule. This leads to simpler proof scripts, as more parts of the proof can be
inferred by the conversion rule and can therefore be omitted. Also, it leads to increased static guarantees for
proof scripts, since the conversion checks happen before the rest of the proof script is evaluated.

The way we achieve this is by programming the conversion checks as type-safe tactics within VeriML, and
then evaluating them statically using a simple staging mechanism (see Fig. 2). The type of the conversion tactics
requires that they produce a proof object which proves the claimed equivalence of the propositions. In this way,
type safety of VeriML guarantees that soundness is maintained. At the same time, users are free to extend the
conversion rule with their own conversion tactics written in a familiar programming model, without requiring
any metatheoretic additions or termination proofs. Such proofs are only necessary if decidability of the extra
conversion checks is desired. Furthermore, this approach allows for metatheoretic reductions as the original
conversion rule can be programmed within the language. Thus it can be removed from the logic, and replaced
by the simpler notion of explicit equalities, leading to both simpler metatheory and a smaller trusted base.

Checking tactics. The above approach addresses the issue of being able to extend the amount of static
checking possible for proof scripts. But what about tactics? Our existing work on VeriML shows how the
increased type information addresses some of the issues of tactic development using current proof assistants,
where tactics are programmed in a completely untyped manner.
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Figure 2. Staging in VeriML

Still, if we consider the case of tactics more closely, we will see that there is a limitation to the amount of
checking that is done statically, even using this language. When programming a new tactic, we would like to
reuse existing tactics to produce the required proofs. Therefore, rather than writing proof objects by hand inside
the code of a tactic, we would rather use proof scripts. The issue is that in order to check whether the contained
proof scripts are valid, they need to be evaluated — but this only happens when an invocation of the tactic reaches
the point where the proof script is used. Therefore, the static guarantees that this approach provides are severely
limited by the fact that the proof scripts inside the tactics cannot be checked statically, when the tactic is defined.

Static proof scripts. This is the second fundamental issue we address in this paper. We show that the same
staging construct utilized for introducing the extensible conversion rule, can be leveraged to perform static proof
checking for tactics. The crucial point of our approach is the proof of existence of a transformation between
proof objects, which suggests that under reasonable conditions, a proof script contained within a tactic can be
transformed into a static proof script. This static script can then be evaluated at tactic definition time, to be
checked for validity.

Last, we will show that this approach lends itself well to writing extensions of the conversion rule. We show
that we can create a layering of conversion rules: using a basic conversion rule as a starting point, we can utilize
it inside static proof scripts to implicitly prove the required obligations of a more advanced version, and so
on. This minimizes the required user effort for writing new conversion rules, and enables truly modular proof
checking.

3. Our toolbox

In this section, we will present the essential ingredients that are needed for the rest of our development. The
main requirement is a language that supports type-safe manipulation of terms of a particular logic, as well
as a general-purpose programming model that includes general recursion and other side-effectful operations.
Two recently proposed languages for manipulating LF terms, Beluga [Pientka and Dunfield 2008] and Delphin
[Poswolsky and Schiirmann 2008], fit this requirement, as does VeriML [Stampoulis and Shao 2010], which is a
language used to write type-safe tactics. Our discussion is focused on the latter, as it supports a richer ML-style
calculus compared to the others, something useful for our purposes. Still, our results apply to all three.

We will now briefly describe the constructs that these languages support, as well as some new extensions that
we propose. The interested reader can read more about these constructs in Sec. 6 and in the appendix.

A formal logic. The computational language we are presenting is centered around manipulation of terms of a
specific formal logic. We will see more details about this logic in Sec. 4. For the time being, it will suffice
to present a set of assumptions about the syntactic classes and typing judgements of this logic, shown in
Fig. 3. Logical terms are represented by the syntactic class ¢, and include proof objects, propositions, terms
corresponding to the domain of discourse (e.g. natural numbers), and the needed sorts and type constructors to
classify such terms. Their variables are assigned types through an ordered context ®. A package of a logical
term 7 together with the variables context it inhabits @ is called a contextual term and denoted as 7 = [®]¢. Our
computational language works over contextual terms for reasons that will be evident later. The logic incorporates
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Figure 3. Assumptions about the logic language
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Figure 4. Syntax for the computational language (ML fragment)
Tu=- | (X:T)—=1|(X:T)x1|(0:ctx) =7
e = |AMX:Te|eT |Ap:ctxe|ed|(T,e)|let (X, x)=eine

| holcase T return tof (71 — ey)--- (T, — e,) | ctxcase ® return T of (D1 = ep)--- (P, — €y)

Figure 5. Syntax for the computational language (logical term constructs)

such terms by allowing them to get substituted for meta-variables X, using the constructor X /6. When a term
T = [®']1 gets substituted for X, we go from the @’ context to the current context ® using the substitution G.

Logical terms are classified using other logical terms, based on the normal variables environment ®, and also
an environment P that types meta-variables, thus leading to the ¥; ® 7 : ¢’ judgement. For example, a term ¢
representing a closed proposition will be typed as e; e -7 : Prop, while a proof object #,f proving that proposition
will satisfy the judgement o; @ =7, : .

ML-style functional programming. We move on to the computational language. As its main core, we assume
an ML-style functional language, supporting general recursion, algebraic data types and mutable references
(see Fig. 4). Terms of this fragment are typed under a computational variables environment I" and a store typing
environment X, mapping mutable locations to types. Typing judgements are entirely standard, leading to a
Y; T'F e : Tt judgement for typing expressions.

Dependently-typed programming over logical terms. As shown in Fig. 5, the first important additions to
the ML computational core are constructs for dependent functions and products over contextual terms 7.
Abstraction over contextual terms is denoted as AX : T.e. It has the dependent function type (X : 7) — 7. The type
is dependent since the introduced logical term might be used as the type of another term. An example would be a
function that receives a proposition plus a proof object for that proposition, with type: (P : Prop) — (X : P) — 1.
Dependent products that package a contextual logical term with an expression are introduced through the (T, e)
construct and eliminated using let (X, x) = e in ¢’; their type is denoted as (X : T') x 7. Especially for packages
of proof objects with the unit type, we introduce the syntax LT(T).
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Last, in order to be able to support functions that work over terms in any context, we introduce context
polymorphism, through a similarly dependent function type over contexts. With these in mind, we can define
a simple tactic that gets a packaged proof of a universally quantified formula, and an instantiation term, and
returns a proof of the instantiated formula as follows:

instantiate : (¢ : ctx, T : [0] Type, P: [0, x: T|Prop, a: [0]T) —
LT([0]Vx : T, P) — LT([0] P/[idy, al)
instantiate 0 7 P a pf =let (H) = pfin (H a)

From here on, we will omit details about contexts and substitutions in the interest of presentation.

Pattern matching over terms. The most important new construct that VeriML supports is a pattern matching
construct over logical terms denoted as holcase. This construct is used for dependent matching of a logical term
against a set of patterns. The return clause specifies its return type; we omit it when it is easy to infer. Patterns
are normal terms that include unification variables, which can be present under binders. This is the essential
reason why contextual terms are needed.

Pattern matching over environments. For the purposes of our development, it is very useful to support one
more pattern matching construct: matching over logical variable contexts. When trying to construct a certain
proof, the logical environment represents what the current proof context is: what the current logical hypotheses
at hand are, what types of terms have been quantified over, etc. By being able to pattern match over the
environment, we can “look up” things in our current set of hypotheses, in order to prove further propositions.
We can thus view the current environment as representing a simple form of the current proof state; the pattern
matching construct enables us to manipulate it in a type-safe manner.

One example is an “assumption” tactic, that tries to prove a proposition by searching for a matching
hypotheses in the context:

assumption : (¢ : ctx, P : Prop) — option LT(P)
assumption ¢ P =
ctxcase ¢ of
¢', H: P~ return (H)
|0, _ > assumption ¢/ P

Proof object erasure semantics (new feature). The only construct that can influence the evaluation of a
program based on the structure of a logical term is the pattern matching construct. For our purposes, pattern
matching on proof objects is not necessary — we never look into the structure of a completed proof. Thus we can
have the typing rules of the pattern matching construct specifically disallow matching on proof objects.

In that case, we can define an alternate operational semantics for our language where all proof objects are
erased before using the original small-step reduction rules. Because of type safety, these proof-erasure semantics
are guaranteed to yield equivalent results: even if no proof objects are generated, they are still bound to exist.

Implicit arguments. Let us consider again the instantiate function defined earlier. This function expects five
arguments. From its type alone, it is evident that only the last two arguments are strictly necessary. The last
argument, corresponding to a proof expression for the proposition Vx : T, P, can be used to reconstruct exactly
the arguments ¢, 7 and P. Furthermore, if we know what the resulting type of a call to the function needs to be,
we can choose even the instantiation argument a appropriately. We employ a simple inferrence mechanism so
that such arguments are omitted from our programs. This feature is also crucial in our development in order to
implicitly maintain and utilize the current proof state within our proof scripts.
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Figure 6. Syntax and selected rules of the logic language AHOL
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d=pnd closure of d —py d’

Figure 7. Extending AHOL with the conversion rule (\AHOL,)

Minimal staging support (new feature). Using the language we have seen so far we are able to write powerful
tactics using a general-purpose programming model. But what if, inside our programs, we have calls to tactics
where all of their arguments are constant? Presumably, those tactic calls could be evaluated to proof objects prior
to tactic invocation. We could think of this as a form of generalized constant folding, which has one intriguing

benefit: we can tell statically whether the tactic calls succeed or not.

This paper is exactly about exploring this possibility. Towards this effect, we introduce a rudimentary staging
construct in our computational language. This takes the form of a letstatic construct, which binds a static
expression to a variable. The static expression is evaluated during stage one (see Fig. 2), and can only depend on
other static expressions. Details of this construct are presented in Fig. 11d and also in Sec. 6. After this addition,

expressions in our language have a three-phase lifetime, that are also shown in Fig. 2.

— type-checking, where the well-formedness of expressions according to the rules of the language is checked,

and inference of implicit arguments is performed

— static evaluation, where expressions inside letstatic are reduced to values, yielding a residual expression

— run-time, where the residual expression is evaluated
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4. Extensible conversion rule

With these tools at hand, let us now return to the first issue that motivates us: the fact that proof checking is rigid
and cannot be extended with user-defined procedures. As we have said in our introduction, many modern proof
assistants are based on logics that include a conversion rule. This rule essentially identifies propositions up to
some equivalence relation: usually this is equivalence up to partial evaluation of the functions contained within
propositions.

The supported relation is decided when the logic is designed. Any extension to this relation requires a
significant amount of work, both in terms of implementation, and in terms of metatheoretic proof required.
This is evidenced by projects that extend the conversion rule in Coq, such as Blanqui et al. [1999] and Strub
[2010]. Even if user extensions are supported, those only take the form of first-order theories. Can we do better
than this, enabling arbitrarily complex user extensions, written with the full power of ML, yet maintaining
soundness?

It turns out that we can: this is the subject of this section. The key idea is to recognize that the conversion
rule is essentially a tactic, embedded within the type checker of the logic. Calls to this tactic are made implicitly
as part of checking a given proof object for validity. So how can we support a flexible, extensible alternative?
Instead of hardcoding a conversion tactic within the logic type checker, we can program a type-safe version of
the same tactic within VeriML, with the requirement that it provides proof of the claimed equivalence. Instead of
calling the conversion tactic as part of proof checking, we use staging to call the tactic statically — after (VeriML)
type checking, but before runtime execution. This can be viewed as a second, potentially non-terminating proof
checking stage. Users are now free to write their own conversion tactics, extending the static checking available
for proof objects and proof scripts. Still, soundness is maintained, since full proof objects in the original logic
can always be constructed. As an example, we have extended the conversion rule that we use by a congruence
closure procedure, which makes use of mutable data structures, and by an arithmetic simplification procedure.

4.1 Introducing: the conversion rule

First, let us present what the conversion rule really is in more detail. We will base our discussion on a simple
type-theoretic higher-order logic, based on the AHOL logic as described in Barendregt and Geuvers [1999], and
used in our original work on VeriML [Stampoulis and Shao 2010]. We can think of such a logic composed
by the following broad classes: the objects of the domain of discourse d, which are the objects that the logic
reasons about, such as natural numbers and lists; their classifiers, the kinds K (classified in turn by sorts s); the
propositions P; and the derivations, which prove that a certain proposition is true. We can represent derivations in
a linear form as terms 7 in a typed lambda-calculus; we call such terms proof objects, and their types represent
propositions in the logic. Checking whether a derivation is a valid proof of a certain proposition amounts to
type-checking its corresponding proof object. Some details of this logic are presented in Fig. 6; the interested
reader can find more information about it in the above references and in the appendix (Sec. A).

In Fig. 6, we show what the conversion rule looks like for this logic: it is a typing judgement that effectively
identifies propositions up to an equivalence relation, with respect to checking proof objects. We call this version
of the logic AHOL, and use I, to denote its entailment relation. The equivalence relation we consider in the
conversion rule is evaluation up to B-reductions and uses of primitive recursion of natural numbers, denoted
as natElim. In this way, trivial arguments based on this notion of computation alone need not be witnessed, as
for example is the fact that (Succ x) +y = Succ (x+y) — when the addition function is defined by primitive
recursion on the first argument. Of course, this is only a very basic use of the conversion rule. It is possible to
omit larger proofs through much more sophisticated uses. This leads to simpler proofs and smaller proof objects.

Still, when using this approach, the choice of what relation is supported by the conversion rule needs to be
made during the definition of the logic. This choice permeates all aspects of the metatheory of the logic. It is
easy to see why, even with the tiny fragment of logic we have introduced. Most typing rules for proof objects in
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Figure 8. Extending AHOL with explicit equality (\HOL,)

the logic are similar to the rules —INTRO and —ELIM: they are syntax-directed. This means that upon seeing
the associated proof object constructor, like Ax : Pt in the case of —INTRO, we can directly tell that it applies.
If all rules were syntax directed, it would be entirely simple to prove that the logic is sound by an inductive
argument: essentially, since no proof constructor for False exists, there is no valid derivation for False.

In this logic, the only rule that is not syntax directed is exactly the conversion rule. Therefore, in order to
prove the soundness of the logic, we have to show that the conversion rule does not somehow introduce a proof
of False. This means that proving the soundness of the logic passes essentially through the specific relation we
have chosen for the conversion rule. Therefore, this approach is foundationally limited from supporting user
extensions, since any new extension would require a new metatheoretic result in order to make sure that it does
not violate logical soundness.

4.2 Throwing conversion away

Since having a fixed conversion rule is bound to fail if we want it to be extensible, what choice are we left with,
but to throw it away? This radical sounding approach is what we will do here. We can replace the conversion
rule by an explicit notion of equality, and provide explicit proof witnesses for rewriting based on that equality.
Essentially, all the points where the conversion rule was alluded to and proofs were omitted, need now be
replaced by proof objects witnessing the equivalence. Some details for the additions required to the base AHOL
logic are shown in Fig. 8, yielding the AHOL, logic. There are good reasons for choosing this version: first, the
proof checker is as simple as possible, and does not need to include the conversion checking routine. We could
view this routine as performing proof search over the replacement rules, so it necessarily is more complicated,
especially since it needs to be relatively efficient. Also, the metatheory of the logic itself can be simplified. Even
when the conversion rule is supported, the metatheory for the associated logic is proved through the explicit
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BNequal : (¢:ctx,T : Type,t; : T,to : T) — option LT(¢; = 1,)
BNequal ¢ Tt 1, =
holcase whnf ¢ T t;, whnf ¢ T 1, of
((tq: TN = T) 1), (2 17) —
do (pf;) <+ PNequal o (7" —T)1,1,
(pf;) <« PNequal ¢ 7’114
return (--- proof of tyty =tctg ---)
| (tg = tp), (tc = 1) —
do (pf;) < PNequal ¢ Propt,t,
(pf;) <« PNequal ¢ Propt,ty
return (--- proof of t, =ty =t. — 1tz --+)
‘ (7\)( T.ll), (7\.)6 T.lz) —
do (pf) < PBNequal [, x:T|Propt; tp
return (--- proofof Mx: Tty =Ax:Titp---)
| 11,1y — doreturn (--- proofof ty =11 -+-)
| 1,22 — None

requireEqual : (¢ :ctx,T : Type,t; : T,tp : T).LT(t; =12)

requireEqual 0 7't 1, =
match BNequal ¢ T 7, 1, with Some x — x | None — error

Figure 9. VeriML tactic for checking equality up to B-conversion

equality approach; this is because model construction for a logic benefits from using explicit equality [Siles and
Herbelin 2010].

Still, this approach has a big disadvantage: the proof objects soon become extremely large, since they include
painstakingly detailed proofs for even the simplest of equivalences. This precludes their use as independently
checkable proof certificates that can be sent to a third party. It is possible that this is one of the reasons why
systems based on logics with explicit equalities, such as HOL4 [Slind and Norrish 2008] and Isabelle/HOL
[Nipkow et al. 2002], do not generate proof objects by default.

4.3 Getting conversion back

We will now see how it is possible to reconcile the explicit equality based approach with the conversion rule: we
will gain the conversion rule back, albeit it will remain completely outside the logic. Therefore we will be free
to extend it, all the while without risking introducing unsoundness in the logic, since the logic remains fixed
(AHOL, as presented above).

We do this by revisiting the view of the conversion rule as a special “trusted” tactic, through the tools
presented in the previous section. First, instead of hardcoding a conversion tactic in the type checker, we program
a type-safe conversion tactic, utilizing the features of VeriML. Based on typing alone we require that it returns
a valid proof of the claimed equivalences:

BNequal : (0 :ctx, T : Type, t : T, t' : T) — option LT(t =1¢')
Second, we evaluate this tactic under proof erasure semantics. This means that no proof objects are produced,

leading to the same space gains as the original conversion rule. Third, we use the staging construct in order to
check conversion statically.

62



whnf: (¢:ctx, T :Type,t: T) — (' : T) x LT(r =1¢)
whnf ¢ 7't = holcase ¢ of
(tl T = T)(l‘2 : T/) —
let <t;, pf1> = whnf ¢ (T/ — T) tin
holcase 7; of
Ax: T/'tf = ([0] tf/[id‘bvt2]7"'>
e {0l )
| natElimy f; fyn—
let (n’, pfi) = whnf ¢ Nat n in holcase n’ of
zero = ([0 f---)
|succrn’ — ([0] fyn' (natElimg f; fs 1), )

|’ — ([0]natElimy f; fin',---)
|t (t, -+

Figure 10. VeriML tactic for rewriting to weak head-normal form

Details. 'We now present our approach in more detail. First, in Fig. 9, we show a sketch of the code behind the
type-safe conversion check tactic. It works by first rewriting its input terms into weak head-normal form, via the
whnf function in Fig. 10, and then recursively checking their subterms for equality. In the equivalence checking
function, more cases are needed to deal with quantification; while in the rewriting procedure, a recursive call
is missing, which would complicate our presentation here. We also define a version of the tactic that raises an
error instead of returning an option type if we fail to prove the terms equal, which we call requireEqual. The full
details can be found in our implementation.

The code of the BNequal tactic is in fact entirely similar to the code one would write for the conversion check
routine inside a logic type checker, save for the extra types and proof objects. It therefore follows trivially that
everything that holds for the standard implementation of the conversion check also holds for this code: e.g. it
corresponds exactly to the =gy relation as defined in the logic; it is bound to terminate because of the strong
normalization theorem for this relation; and its proof-erased version is at least as trustworthy as the standard
implementation.

Furthermore, given this code, we can produce a form of typed proof scripts inside VeriML that correspond
exactly to proof objects in the logic with the conversion rule, both in terms of their actual code, and in terms of
the steps required to validate them. This is done by constructing a proof script in VeriML by induction on the
derivation of the proof object in AHOL,, replacing each proof object constructor by an equivalent VeriML tactic
as follows:

constructor to tactic of type

Ax:Pm Assumee | LT([0, H:P|P')—LT(P—P')

T T Apply ej €3 | LT(P — P') — LT(P) — LT(P)

A K. Intro e LT([0, x: T]P) — LT(Vx: T,P))

nd Inst e a LT(Vx:T,P) = (a:T) —
LT(P/[id, a))

c Lift ¢ (H:P)—LT(P)

(conversion) | Conversion | LT(P) — LT(P = P') — LT(P')

Here we have omitted the current logical environment ¢; it is maintained through syntactic means as discussed
in Sec. 7 and through type inference. The only subtle case is conversion. Given the transformed proof e for the
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proof object T contained within a use of the conversion rule, we call the conversion tactic as follows:
letstatic pf = requireEqual P P in Conversion e pf

The arguments to requireEqual can be easily inferred, making crucial use of the rich type information available.
Conversion could also be used implicitly in the other tactics. Thus the resulting expression looks entirely
identical to the original proof object.

Correspondence with original proof object. In order to elucidate the correspondence between the resulting
proof script expression and the original proof object, it is fruitful to view the proof script as a proof certificate,
sent to a third party. The steps required to check whether it constitutes a valid proof are the following. First,
the whole expression is checked using the type checker of the computational language. Then, the calls to the
requireEqual function are evaluated during stage one, using proof erasure semantics. We expect them to be
successful, just as we would expect the conversion rule to be applicable when it is used. Last, the rest of the
tactics are evaluated; by a simple argument, based on the fact that they do not use pattern matching or side-
effects, they are guaranteed to terminate and produce a proof object in AHOL,. This validity check is entirely
equivalent to the behavior of type-checking the AHOL, proof object, save for pushing all conversion checks
towards the end.

4.4 Extending conversion at will

In our treatment of the conversion rule we have so far focused on regaining the BN conversion in our framework.
Still, there is nothing confining us to supporting this conversion check only. As long as we can program a
conversion tactic in VeriML that has the right type, it can safely be made part of our conversion rule.

For example, we have written an eufEqual function, which checks terms for equivalence based on the equality
with uninterpreted functions decision procedure. It is adapted from our previous work on VeriML [Stampoulis
and Shao 2010]. This equivalence checking tactic isolates hypotheses of the form d; = d> from the current
context, using the newly-introduced context matching support. Then, it constructs a union-find data structure in
order to form equivalence classes of terms. Based on this structure, and using code similar to BNequal (recursive
calls on subterms), we can decide whether two terms are equal up to simple uses of the equality hypotheses at
hand. We have combined this tactic with the original fNequal tactic, making the implicit equivalence supported
similar to the one in the Calculus of Congruent Constructions [Blanqui et al. 2005]. This demonstrates the
flexibility of this approach: equivalence checking is extended with a sophisticated decision procedure, which is
programmed using its original, imperative formulation. We have programmed both the rewriting procedure and
the equality checking procedure in an extensible manner, so that we can globally register further extensions.

4.5 Typed proof scripts as certificates

Earlier we discussed how we can validate the proof scripts resulting from turning the conversion rule into
explicit tactic calls. This discussion shows an interesting aspect of typed proof scripts: they can be viewed as
a proof witness that is a flexible compromise between untyped proof scripts and proof objects. When a typed
proof script consists only of static calls to conversion tactics and uses of total tactics, it can be thought of as a
proof object in a logic with the corresponding conversion rule. When it also contains other tactics, that perform
potentially expensive proof search, it corresponds more closely to an untyped proof script, since it needs to be
fully evaluated. Still, we are allowed to validate parts of it statically. This is especially useful when developing
the proof script, because we can avoid the evaluation of expensive tactic calls while we focus on getting the
skeleton of the proof correct.

Using proof erasure for evaluating requireEqual is only one of the choices the receiver of such a proof
certificate can make. Another choice would be to have the function return an actual proof object, which we
can check using the AHOL, type checker. In that case, the VeriML interpreter does not need to become part of
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the trusted base of the system. Last, the ‘safest possible’ choice would be to avoid doing any evaluation of the
function, and ask the proof certificate provider to do the evaluation of requireEqual themselves. In that case, no
evaluation of computational code would need to happen at the proof certificate receiver’s side. This mitigates
any concerns one might have for code execution as part of proof validity checking, and guarantees that the
small AHOL, type checker is the trusted base in its entirety. Also, the receiver can decide on the above choices
selectively for different conversion tactics — e.g. use proof erasure for BNequal but not for eufEqual, leading to a
trusted base identical to the AHOL, case. This means that the choice of the conversion rule rests with the proof
certificate receiver and not with the designer of the logic. Thus the proof certificate receiver can choose the level
of trust they require at will.

5. Static proof scripts

In the previous section, we have demonstrated how proof checking for typed proof scripts can be made user-
extensible, through a new treatment of the conversion rule. It makes use of user-defined, type-safe tactics, which
are evaluated statically. The question that remains is what happens with respect to proofs within tactics. If a
proof script is found within a tactic, must we wait until that evaluation point is reached to know whether the
proof script is correct or not? Or is there a way to check this statically, as soon as the tactic is defined?

In this section we show how this is possible to do in VeriML using the staging construct we have introduced.
Still, in this case matters are not as simple as evaluating certain expressions statically rather than dynamically.
The reason is that proof scripts contained within tactics mention uninstantiated meta-variables, and thus cannot
be evaluated through staging. We resolve this by showing the existence of a transformation, which “collapses”
logical terms from an arbitrary meta-variables context into the empty one.

We will focus on the case of developing conversion routines, similar to the ones we saw earlier. The ideas we
present are generally applicable when writing other types of tactics as well; we focus on conversion routines in
order to demonstrate that the two main ideas we present in this paper can work in tandem.

A rewriter for plus. We will consider the case of writing a rewriter —similar to whnf— for simplifying
expressions of the form x +y, depending on the second argument. The addition function is defined by induction
on the first argument, as follows:

(4+) = Ax.Ay.natElimng y (Ap.Ar.Succ r) x

In order for rewriters to be able to use existing as well as future rewriters to perform their recursive calls, we
write them in the open recursion style — they receive a function of the same type that corresponds to the “current”
rewriter. The code looks as follows:

rewriterType = (¢ : ctx, T : Type,t : T) — (¢ : T) x LT(t =)
plusRewriter1 : rewriterType — rewriterType
plusRewriter1 recursive ¢ T t = holcase ¢ with
X+y—
let (y/, (pfy’)) = recursive ¢ yin
let (', (pft')) =
holcase y' return ¢’ : [¢] Nat.LT([¢]x+y' = 1) of
0 — (x,--- proofof x+0=x---)
| Succy' — <Succ(x+y’),
-+« proof of x+Succy = Succ (x+Y') >
|y = (x+Y,-- proof of x+y =x+y ---)
in(t', (--- proof of x+y=1t"---))
| 1 — (t, - proofof t =t ---)

/
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While developing such a tactic, we can leverage the VeriML type checker to know the types of missing
proofs. But how do we fill them in? For the interesting cases of x+ 0 = x and x + Succ y’ = Succ (x+ /),
we would certainly need to prove the corresponding lemmas. But for the rest of the cases, the corresponding
lemmas would be uninteresting and tedious to state, such as the following for the x+y = ¢ case:

lemmal : Vx,y,y,t',y=y — (x+y =t) > x+y=t

Stating and proving such lemmas soon becomes a hindrance when writing tactics. An alternative is to use the
congruence closure conversion rule to solve this trivial obligation for us directly at the point where it is required.
Our first attempt would be:

proof of x+y=1¢ =
let (pf) = requireEqual [0,H, :y =Y Hy:x+y =1] (x+y) ¢
in ([0] pf/[idy, PfY', pft])

The benefit of this approach is evident when utilizing implicit arguments, since most of the details can be
inferred and therefore omitted. Here we had to alter the environment passed to requireEqual, which includes
several extra hypotheses. Once the resulting proof has been computed, the hypotheses are substituted by the
actual proofs that we have.

The problem with this approach is two-fold: first, the call to the requireEqual tactic is recomputed every time
we reach that point of our function. For such a simple tactic call, this does not impact the runtime significantly;
still, if we could avoid it, we would be able use more sophisticated and expensive tactics. The second problem
is that if for some reason the requireEqual is not able to prove what it is supposed to, we will not know until we
actually reach that point in the function.

Moving to static proofs. This is where using the letstatic construct becomes essential. We can evaluate the
call to requireEqual statically, during stage one interpretation. Thus we will know at the time that plusRewriter1
is defined whether the call succeeded; also, it will be replaced by a concrete value, so it will not affect the
runtime behavior of each invocation of plusRewriter1 anymore. To do that, we need to avoid mentioning any
of the metavariables that are bound during runtime, like x, y, and . This is done by specifying an appropriate
environment in the call to requireEqual, similarly to the way we incorporated the extra knowledge above and
substituted it later. Using this approach, we have:

proof of x+y=1' =
letstatic (pf) =
let¢’ = [x,y,y,t' :Nat,H, :y=y Hp:x+y =¢]in
requireEqual ¢’ (x+y) ¢/
in ([0] pf/[x/ide,/idg,y' /ide, ' /iy, ply’ /ide, it /idy])

What we are essentially doing here is replacing the meta-variables by normal logical variables, which our
tactics can deal with. The meta-variable context is “collapsed” into a normal context; proofs are constructed
using tactics in this environment; last, the resulting proofs are transported back into the desired context by
substituting meta-variables for variables. We have explicitly stated the substitutions in order to distinguish
between normal logical variables and meta-variables.

The reason why this transformation needs to be done is that functions in our computational language can only
manipulate logical terms that are open with respect to a normal variables context; not logical terms that are open
with respect to the meta-variables context too. A much more complicated, but also more flexible alternative to
using this “collapsing” trick would be to support meta-n-variables within our computational language directly.

Overall, this approach is entirely similar to proving the auxiliary lemma mentioned above, prior to the tactic
definition. The benefit is that by leveraging the type information together with type inference, we can avoid
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stating such lemmas explicitly, while retaining the same runtime behavior. We thus end up with very concise
proof expressions that are statically validated. We introduce syntactic sugar for binding a static proof script
to a variable, and then performing a substitution to bring it into the current context, since this is a common
operation.

(€)sic = letstatic (pf) = ein ([0]pf/---)

Based on these, the trivial proofs in the above tactic can be filled in using a simple (requireEqual)
the other two we use (Instantiate (Natinduction requireEqual requireEqual) x)

static call; for
static*

After we define plusRewriter1, we can register it with the global equivalence checking procedure. Thus, all
later calls to requireEqual will benefit from this simplification. It is then simple to prove commutativity for

addition:

plusComm :  LT(Vx,yx+y=y+x)
plusComm = NatInduction requireEqual requireEqual

Based on this proof, we can write a rewriter that takes commutativity into account and uses the hash values
of logical terms to avoid infinite loops. We have worked on an arithmetic simplification rewriter that is built by
layering such rewriters together, using previous ones to aid us in constructing the proofs required in later ones.
It works by converting expressions into a list of monomials, sorting the list based on the hash values of the
variables, and then factoring monomials on the same variable. Also, the eufEqual procedure mentioned earlier
has all of its associated proofs automated through static proof scripts, using a naive, potentially non-terminating,
equality rewriter.

Is collapsing always possible? A natural question to ask is whether collapsing the metavariables context into
a normal context is always possible. In order to cast this as a more formal question, we notice that the essential
step is replacing a proof object 7 of type [®]¢, typed under the meta-variables environment ‘P, by a proof object
T’ of type [®']¢’ typed under the empty meta-variables environment. There needs to be a substitution so that 7/
gets transported back to the @, ¥ environment, and has the appropriate type.

We have proved that this is possible under certain restrictions: the types of the metavariables in the current
context need to depend on the same free variables context ®,,x, or prefixes of that context. Also the substitutions
they are used with need to be prefixes of the identity substitution for ®p,,x. Such terms are characterized
as collapsible. We have proved that collapsible terms can be replaced using terms that do not make use of
metavariables; more details can be found in Sec. 6 and in Sec. F of the appendix.

This restriction corresponds very well to the treatment of variable contexts in the Delphin language. This
language assumes an ambient context of logical variables, instead of full, contextual modal terms. Constructs
to extend this context and substitute a specific variable exist. If this last feature is not used, the ambient context
grows monotonically and the mentioned restriction holds trivially. In our tests, this restriction has not turned out
to be limiting.

6. Metatheory

We have completed an extensive reworking of the metatheory of VeriML, in order to incorporate the features
that we have presented in this paper. Our new metatheory includes a number of technical advances compared
to our earlier work [Stampoulis and Shao 2010]. We will present a technical overview of our metatheory in this
section; full details can be found in the appendix.

Variable representation technique. Though our metatheory is done on paper, we have found that using a
concrete variable representation technique elucidates some aspects of how different kinds of substitutions work
in our language, compared to having normal named variables. For example, instantiating a context variable with
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Figure 11. Main definitions in metatheory
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a concrete context triggers a set of potentially complicated a-renamings, which a concrete representation makes
explicit. We use a hybrid technique representing bound variables as deBruijn indices, and free variables as
deBruijn levels. Our technique is a small departure from the named approach, requiring fewer extra annotations
and lemmas than normal deBruijn indices. Also it identifies terms not only up to o-equivalence, but also up to
extension of the context with new variables; this is why it is also used within the VeriML implementation.The
two fundamental operations of this technique are freshening and binding, which are shown in Fig. 11a. Details
can be found in section A of the appendix.

Extension variables. We extend the logic with support for meta-variables and context variables — we refer to
both these sorts of variables as extension variables. A meta-variable X; stands for a contextual term T = [P]z,
which packages a term together with the context it inhabits. Context variables ¢; stand for a context &, and
are used to “weaken” parametric contexts in specific positions. Both kinds of variables are needed to support
manipulation of open logical terms. Details of their definition and typing are shown in Fig. 11b. We use the
same hybrid approach as above for representing these variables. A somewhat subtle aspect of this extension is
that we generalize the deBruijn levels I used to index free variables, in order to deal effectively with parametric
contexts.

Substitutions. The hybrid representation technique we use for variables renders simultaneous substitutions for
all variables in scope as the most natural choice. In Fig. 11c, we show some example rules of how to apply a
full simultaneous substitution G to a term #, denoted as 7 - 6. Similarly, we define full simultaneous substitutions
oy for extension contexts; defining their application has a very natural description, because of our variable
representation technique. We prove a number of substitution lemmas which have simple statements, as shown
in Fig. 11c. The proofs of these lemmas comprise the main effort required in proving the type-safety of a
computational language such as the one we support, as they represent the point where computation specific to
logical term manipulation takes place. Details can be found in section B of the appendix.

Computational language. We define an ML-style computational language that supports dependent functions
and dependent pairs over contextual terms 7', as well as pattern matching over them. Lack of space precludes us
from including details here; full details can be found in section C of the appendix. A fairly complete ML calculus
is supported, with mutable references and recursive types. Type safety is proved using standard techniques; its
central point is extending the logic substitution lemmas to expressions and using them to prove progress and
preservation of dependent functions and dependent pairs. This proof is modular with respect to the logic and
other logics can easily be supported.

Pattern matching. Our metatheory includes many extensions in the pattern matching that is supported, as well
as a new approach for dealing with typing patterns. We include support for pattern matching over contexts (e.g.
to pick out hypotheses from the context) and for non-linear patterns. The allowed patterns are checked through
a restriction of the usual typing rules W, T : K.

The essential idea behind our approach to pattern matching is to identify what the relevant variables in a
typing derivation are. Since contexts are ordered, “removing” non-relevant variables amounts to replacing their
definitions in the context with holes, which leads us to partial contexts ¥. The corresponding notion of partial
substitutions is denoted as Gy. Our main theorem about pattern matching can then be stated as:

~

Theorem 6.1 (Decidability of pattern matching) [f ¥+, T : K, o+, T’ : K and relevant(¥; ®+T :K) =¥,
then either there exists a unique partial substitution Gy such that ¢ - 6y : ¥ and T -6y = T', or no such
substitution exists.

Details are found in section D of the appendix.
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Staging. Our development in this paper critically depends on the letstatic construct we presented earlier. It
can be seen as a dual of the traditional box construct of Davies and Pfenning [1996]. Details of its typing and
semantics are shown in Fig. 11d. We define a notion of “static evaluation contexts” 8, which enclose a hole
of the form letstatic x = e in e. They include normal evaluation contexts, as well as evaluation contexts under
binding structures. We evaluate expressions e that include staging constructs using the — relation; internally,
this uses the normal evaluation rules, that are used in the second stage as well, for evaluating expressions
which do not include other staging constructs. If stage-one evaluation is successful, we are left with a residual
dynamic configuration (¢, e;) which is then evaluated normally. We prove type-safety for stage-one evaluation;
its statement follows.

Theorem 6.2 (Stage-one Type Safety) If o; X; o |- ¢ : T then: either e is a dynamic expression ey, or, for every
store u such that = u : X, we have: either u,e —s; error, or, there exists an €', a new store typing ¥’ O ¥ and a
new store u' such that: (u,e) — (/€' ); b/ X and e; X ;0 ¢ 1 1.

Details are found in section E of the appendix.

Collapsing extension variables. Last, we have proved the fact that under the conditions described in Sec. 5,
it is possible to collapse a term 7 into a term ¢’ which is typed under the empty extension variables context; a
substitution ¢ with which we can regain the original term ¢ exists. This suggests that whenever a proof object ¢
for a specific proposition is required, an equivalent proof object that does not mention uninstantiated extension
variables exists. Therefore, we can write an equivalent proof script producing the collapsed proof object instead,
and evaluate that script statically. The statement of this theorem is the following:

Theorem 6.3 If ¥ - [®@]7 : [®|rr and collapsible (¥ + [®]1 : [®@]tr), then there exist ', ¢, t} and G such that
o wf, o [t : [@]t}, ¥, PtFo: D,/ -c=tandt}; -c=17.

The main idea behind the proof is to maintain a number of substitutions and their inverses: one to go from
a general ¥ extension context into an “equivalent” ¥’ context, which includes only definitions of the form
[®]1, for a constant P context that uses no extension variables. Then, another substitution and its inverse are
maintained to go from that extension variables context into the empty one; this is simpler, since terms typed
under ¥’ are already essentially free of metavariables. The computational content within the proof amounts to
a procedure for transforming proof scripts inside tactics into static proof scripts. Details are found in section F
of the appendix.

7. Implementation

We have completed a prototype implementation of the VeriML language, as described in this paper, that supports
all of our claims. We have built on our existing prototype [Stampoulis and Shao 2010] and have added an exten-
sive set of new features and improvements. The prototype is written in OCaml and is about 6k lines of code. Us-
ing the prototype we have implemented a number of examples, that are about 1.5k lines of code. Readers are en-
couraged to download and try the prototype from http://flint.cs.yale.edu/publications/supc.html.

New features. We have implemented the new features we have described so far: context matching, non-linear
patterns, proof-erasure semantics, staging, and inferencing for logical and computational terms. Proof-erasure
semantics are utilized only if requested by a per-function flag, enabling us to selectively “trust” tactics. The
staging construct we support is more akin to the (-) ;. form described as syntactic sugar in Sec. 5, and it is able
to infer the collapsing substitutions that are needed, following the approach used in our metatheory.

Changes. We have also changed quite a number of things in the prototype and improved many of its aspects.
A central change, mediated by our new treatment of the conversion rule, was to modify the used logic in
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order to use the explicit equality approach; the existing prototype used the AHOL, logic. We also switched the
variable representation to the hybrid deBruijn levels-deBruijn indices technique we described, which enabled
us to implement subtyping based on context subsumption. Also, we have adapted the typing rules of the pattern
matching construct in order to support refining the environment based on the current branch.

Examples implemented. We have implemented a number of examples to support our claims. First, we have
written the type-safe conversion check routine for BN, and extended it to support congruence closure based on
equalities in the context. Proofs of this latter tactic are constructed automatically through static proof scripts,
using a naive rewriter that is non-terminating in the general case. We have also completed proofs for theorems of
arithmetic for the properties of addition and multiplication, and used them to write an arithmetic simplification
tactic. All of the theorems are proved by making essential use of existing conversion rules, and are immediately
added into new conversion rules, leading to a compact and clean development style. The resulting code does not
need to make use of translation validation or proof by reflection, which are typically used to implement similar
tactics in existing proof assistants.

Towards a practical proof assistant. In order to facilitate practical proof and program construction in Ver-
iML, we introduced some features to support surface syntax, enabling users to omit most details about the
environments of contextual terms and the substitutions used with meta-variables. This syntax follows the style
of Delphin, assuming an ambient logical variable environment which is extended through a construct denoted
as vx : t.e. Still, the full power of contextual modal type theory is available, which is crucial in order to change
what the current ambient environment is, used, as we saw earlier, for static calls to tactics. In general the surface
syntax leads to much more concise and readable code.

Last, we introduced syntax support for calls to tactics, enabling users to write proof expressions that look very
similar to proof scripts in current proof assistants. We developed a rudimentary ProofGeneral mode for VeriML,
that enables us to call the VeriML type-checker and interpreter for parts of source files. By adding holes to
our sources, we can be informed by the type inference mechanism about their expected types. Those types
correspond to what the current “proof state” is at that point. Therefore, a possible workflow for developing
tactics or proofs, is writing the known parts, inserting holes in missing points to know what remains to be
proved, and calling the typechecker to get the proof state information. This workflow corresponds closely to the
interactive proof development support in proof assistants like Coq and Isabelle, but generalizes it to the case of
tactics as well.

8. Related work

There is a large body of work that is related to the ideas we have presented here.

Techniques for robust proof development. There have been multiple proposals for making proof development
inside existing proof assistants more robust. A well-known technique is proof-by-reflection [Boutin 1997]:
writing total and certified decision procedures within the functional language contained in a logic like CIC. A
recently introduced technique is automation through canonical structures [Gonthier et al. 2011]: the resolution
mechanism for finding instances of canonical structures (a generalization of type classes) is cleverly utilized
in order to program automation procedures for specific classes of propositions. We view both approaches as
somewhat similar, as both are based in cleverly exploiting static “interpreters” that are available in a modern
proof assistant: the partial evaluator within the conversion rule in the former case; the unification algorithm
within instance discovery in the latter case.

Our approach can thus be seen as similar, but also as a generalization of these approaches, since a general-
purpose programming model is supported. Therefore, users do not have to adapt to a specific programming
style for writing automation code, but can rather use a familiar functional language. Proof-by-reflection could
perhaps be used to support the same kind of extensions to the conversion rule; still, this would require reflecting
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a large part of the logic in itself, through a prohibitively complicated encoding. Both techniques are applicable
to our setting as well and could be used to provide benefits to large developments within our language.

The style advocated in Chlipala [2011] (and elsewhere) suggests that proper proof engineering entails
developing sophisticated automation tactics in a modular style, and extending their power by adding proved
lemmas as hints. We are largely inspired by this approach, and believe that our introduction of the extensible
conversion rule and static checking of tactics can significantly benefit it. We demonstrate similar ideas in
layering conversion tactics.

Traditional proof assistants. There are many parallels of our work with the LCF family of proof assistants,
like HOL4 [Slind and Norrish 2008] and HOL-Light [Harrison 1996], which have served as inspiration. First,
the foundational logic that we use is similar. Also, our use of a dedicated ML-like programming language to
program tactics and proof scripts is similar to the approach taken by HOL4 and HOL-Light. Last, the fact
that no proof objects need to be generated is shared. Still, checking a proof script in HOL requires evaluating
it fully. Using our approach, we can selectively evaluate parts of proof scripts; we focus on conversion-like
tactics, but we are not limited inherrently to those. This is only possible because our proof scripts carry proof
state information within their types. Similarly, proof scripts contained within LCF tactics cannot be evaluated
statically, so it is impossible to establish their validity upon tactic definition. It is possible to do a transformation
similar to ours manually (lifting proof scripts into auxiliary lemmas that are proved prior to the tactic), but the
lack of type information means that many more details need to be provided.

The Coq proof assistant [Barras et al. 2010] is another obvious point of reference for our work. We will
focus on the conversion rule that CIC, its accompanying logic, supports — the same problems with respect to
proof scripts and tactics that we described in the LCF case also apply for Coq. The conversion rule, which
identifies computationally equivalent propositions, coupled with the rich type universe available, opens up
many possibilities for constructing small and efficiently checkable proof objects. The implementation of the
conversion rule needs to be part of the trusted base of the proof assistant. Also, the fact that the conversion
check is built-in to the proof assistant makes the supported equivalence rigid and non-extensible by frequently
used decision procedures.

There is a large body of work that aims to extend the conversion rule to arbitrary confluent rewrite systems
(e.g. Blanqui et al. [1999]) and to include decision procedures [Strub 2010]. These approaches assume some
small or larger addition to the trusted base, and extend the already complex metatheory of Coq. Furthermore, the
NuPRL proof assistant [Constable et al. 1986] is based on extensional type theory which includes an extensional
conversion rule. This enables complex decision procedures to be part of conversion; but it results in a very large
trusted base. We show how, for a subset of these type theories, the conversion check can be recovered outside the
trusted base. It can be extended with arbitrarily complex new tactics, written in a familiar programming style,
without any metatheoretic additions and without hurting the soundness of the logic. The question of whether
these type theories can be supported in full remains as future work, but as far as we know, there is no inherrent
limitation to our approach.

Dependently-typed programming. The large body of work on dependently-typed languages has close parallels
to our work. Out of the multitude of proposals, we consider the Russell framework [Sozeau 2006] as the
current state-of-the-art, because of its high expressivity and automation in discharging proof obligations. In
our setting, we can view dependently-typed programming as a specific case of tactics producing complex
data types that include proof objects. Static proof scripts can be leveraged to support expressivity similar to
the Russell framework. Furthermore, our approach opens up a new intriguing possibility: dependently-typed
programs whose obligations are discharged statically and automatically, through code written within the same
language.

Last, we have been largely inspired by the work on languages like Beluga [Pientka and Dunfield 2008] and
Delphin [Poswolsky and Schiirmann 2008], and build on our previous work on VeriML [Stampoulis and Shao
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2010]. We investigate how to leverage type-safe tactics, as well as a number of new constructs we introduce,
so as to offer an extensible notion of proof checking. Also, we address the issue of statically checking the
proof scripts contained within tactics written in VeriML. As far as we know, our development is the first time
languages such as these have been demonstrated to provide a workflow similar to interactive proof assistants.
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Appendices

A. The logic \HOL,

Definition A.1 (Syntax of the language) The syntax of the logic language is given below.

tu=s|c|filbi|At1)2|t1t2 | TI(t)).2 |ty =12 | conviz | reflz | symm¢ | trans 1 1, | congapp ¢ £
| congimpl #; 7, | conglam ¢ | congpi 7 | beta t; 1,
s ::= Prop | Type | Type’

Pu=e|P, ¢
ci=e]|t
Yu=e|X c:t

We use f; to denote the i-th free variable in the current environment and b; for the bound variable with
deBruijn index i. The benefit of this approach is that the representation of terms is unique both up to o-
equivalence and up to extensions of the current free variables context.

Definition A.2 (Context length and access) Gerting the length of a context, and an element out of a context,
are defined as follows. In the case of element access, we assume that i < |®D|.

o] =0
[@,1] = |®[+1
(®,1).|®] = ¢
(D,1).i = &g

Definition A.3 (Substitution length) Getting the length of a substitution is defined as follows.

o] =0
0,1 = o] +1

Definition A.4 (Substitution access) The operation of accessing the i-th term out of a substitution is defined as
follows. We assume that i < |G|.

(o,t).lo|] = 1t
(6,t)i = o.

Definition A.5 (Substitution application) The operation of applying a substitution is defined as follows.
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50 =
c-0O =

fi'G =

b,"G

(
(1
(
(
(
(
(
(
(
(
(
(
(

Mtr).12) -0
t112)-G
(t1).12) -0
= )
convitifp) -G
reflt)-c
symm¢)-G
trans #; l‘z)
congappti )G =
congimplt; )6 =
conglamt) -G
congpit) -G
betar 1,)-C =

[ ¥ e} =

(6',t)-0 =

C.i
b;
Mt -0).(12-0)
(1-0) (12-0)
(t1-0).(2-0)
(t1-0) =(12-0)
conv (t; -G) (2 0)
refl (¢ - ©)
symm (¢ - G)
trans (¢ -©) (2 - 0)
congapp (t1-6) (t2- )
congimpl (¢ -©) (f2-©)
conglam (¢ - G)
congpi (¢ - ©)
beta (¢ -©) (- 0)

ZG/-G),(I-G)

Definition A.6 (Identity substitution) The identity substitution is defined as follows.

ide =
idc])7 t =

ido, flo|

Definition A.7 Free and bound variable limits for terms are defined as follows.

t<n

S <fn
c<'n
fi</n =
b; <fn
AMt)n)<'n <=
fth<ln =
s<ln
c<ln
fi<tn
bi<bn =
(AMt) ) <bn <«
tith<’n =

n>i

fh<'nAnt<'n
fh<'nrnn<in

n>i
fh<’niat,<bn+1
1 <Pnnt,<ln
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Definition A.8 Free and bound variable limits for substitutions are defined as follows.

o<fn

(o,)</n < o</ nAt</n

oc<’n

0<bn

(6,1)<’n <« o<bnnt<ln

Definition A.9 (Freshening) Freshening a term is defined as follows. We assume thatt </ m andt <b n+ 1.

(11

s

= 5,2

[

[

[ fi]
[Dn ]
[b;]"
[ll])lz-l
(1117
[TI(t1).12)]"
[ =1]
[
[
[
[
[
[
[
[
[

NA@A@

convi ]
refl 7]
symm ¢]

congapp #1 2 |
congimpl ¢ #; |
conglam |

congpi 7|
beta r; l‘ﬂ

fi

fm

b, wheni<n
MIn1")- 1"
(1] 2]

([ ") (21"
(1] = [t2]

conv [t1] [t2]
refl [¢]

symm [f]

trans [11] [12]
congapp [t1] [f]
congimpl [1/] [12]
conglam [7]
congpi []

beta (l‘{l [l2~|

Definition A.10 (Binding) Binding a term is defined as follows. We assume thatt </ m and t < n.
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5] =

Lc] =

Lfm—lj:jz = bn

LA = fiwheni<m—1
LbiJ = bi

[(Mn)n)] = A" (o)
11 1] = (0" [n]"
H(n)n)] = (). o)
11 =1 = |n]=|n]

lconv i 1| = conv |11] [12]
|refl ] = refl 1]

|symm | = symm [¢]

[trans 7 1, | = trans |1 [12]
|congapp 1 2] = congapp |71] |12]
[congimplt; 1] = congimpl |#1] |12]
|conglam ¢ | = conglam |

| congpi ¢ = congpi |
|betat; 1] = beta [11] |12]

Definition A.11 (Typing) The typing rules are defined as follows.

X wf efyt:s (c:_)¢X

Fewf
FX, c:twf
F® wf dHr:s
e wf
o, rwf
citeX D.i=t (s,s) e A Phnis @k [n]g:s (s,s',s") R
Plyc:t D fi:t Dy DTI(t).tr: 8"
dl1:s D, 1= ftzhcm 1 DHI(n). |7'] ®|+1 oS’ Db TI(t).t bttt
qDl‘?L(tl).tQ : H(l‘]). Ll‘/J |+ 1 dHHt: [t/—‘ @ (idcp,tz)

ONCN RS PtH1:t D¢ Type
1 =t :Prop
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drHr1:h ® 1 : Prop b+t =0 (ONSE S D1 =1 :Prop P11 =1
dFconvet it Drreflty it =1 ®Fsymmt,:th =1

dLt,:HhH=1 D1y h=1
dttranst, 1, it =1

S, M =M, d+-M,:A—B Pty N =N, PHN A
® - congappt,t, : M{ Ny =M, N,

P11, A=A CI),AII_ [l‘b-| :B1 =B, dHA; IPI’Op ‘D,AH— [Bl-| ZPFOp
O congimpl tq (7»(141).1‘[,) : H(Al) I_Bd = H(Az) \_BQJ

® At [,]:B=B ®FII(A).|B] =II(A). |B'| : Prop
@ |- congpi (M(A) 1) : TI(A). |B] =TI(A). |B'|

CI),AI— [l‘b-| :B1 =8B, CDI‘)\,(A)LB]J :k(A)LBZJ : Prop
® - conglam (A(A).t,) : A(A). | B ] (A).|B2]

I
>

OPHAA)M:A—B dPFN:A d+A— B:Type
P+ beta (A(A).M) N : (MA).M) N = [M] - (idg,N)

F®d wf dFo:d dFr:f-o
DPle:e ®to,1: (V1)

Lemma A.12 Ift </ m and |®| = m then t - idp = 1t.

Trivial by induction on t </ m. The interesting case is f; -ide = f;. This is simple to prove by induction on ®.
Lemma A.13 Ifc </ m then 6 - id,, = G.

By induction on ¢ and use of lemma A.12.

Lemma A.14 [f® ¢t : ¢ thent </ |®| and t <" 0.

Trivial by induction on the typing derivation ® 7 : ¢’ (and use of implicit assumptions for [¢]).

Lemma A.15 If = ® wf then for any ® and t,..., such that ® = ®, 11, t,--- ,t, and = ®' wf, we have that
D'+ idg : P.

By induction on &.

In case @ = e, trivial.

In case ® = @”, ¢/, then by induction hypothesis we have for all proper extensions of ®” ®" ¢, --- 1, Fidg :
o4
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We now need to prove that for all proper extensions of ®”, t' we have ®”, ', 11, ---, 1, Fidgr p : (D, 1').
From the inductive hypothesis we get that ®”, ¢, ry, --- , t, - idg : ®”. We also have that ®" ¢ : s
by inversion of the well-formedness of ®.
Thus by A.14, we get that ¢’ </ |®"|.
Furthermore by A.12 we get that ¢’ - idg =1'.
Thus we have ®",¢', 11, -+ 1, = figr 11’ - idgr.
Thus by applying the appropriate substitution typing rule, we get that ®",¢',11, --- .1, b (ider, fior|) :
(@", t'), which is exactly the desired result.

Lemma A.16 [f ® - 6 : @' then 6 </ |®|, 6 <’ 0 and |6| = |®/.

Trivial by induction on the typing derivation for &, and use of lemma A.14.

Lemma A.17 If ® wfand |®| = n then for all i < n, ®.i </ i.

Trivial by induction on the well-formedness derivation for ® and use of lemma A.14.

Lemma A.18 Ift <'m,

ol=mandt-c=1t"thent-(0,11,ty,- 1) =1
Trivial by induction on t </ m.

Lemma A.19 Ifc </ m,

6'|=mand -6’ =0, then - (0 11,12, ,1,) = O
Trivial by induction on G, and use of the lemma A.18.

Lemma A.20 If- ®wf, ®.i=tand ®' +0c:D, thend' -0.i:t-G.

Induction on the derivation of typing for G.

In the case where G = e, the (implicit) assumption that i < |®| obviously does not hold, so the case is impossible.
In the case where 6 = o', ¢/, we split cases on whether i = |®| — 1 or not.

If it is, then the typing rule gives us the desired directly.

If it is not, the inductive hypothesis gives us the result @ - ¢’.i : ¢ - ¢’. Now from lemma A.17 we have that
®.i </ i. We can now apply lemma A.18 to gett-6’ =¢-(¢’,t') =t - G, proving the desired.

Lemma A.21 Ift </ m, t <’ n+1, 6 </ m' and |o| = m then [t-o1", = [t]" - (O, fu)-

By structural induction on t.
Cases t = s and t = c are trivial.
When ¢ = f;, we have i < m thus both sides will be equal to G.i.
When t = b;, we split cases on whether i =n ori < n.
If i = n, then the left-hand side becomes [b, - G|, = [by ],/ = fur-
The right-hand side becomes [b, 1) - (G, fur) = fin* (O, for) = fr-
When i < nitis trivial to see that both sides are equal to bi.
In the case where t = A(t}).(f2), we prove the result trivially using the induction hypothesis.
The subtlety for 1, is that the inductive hypothesis is applied for n = n+ 1, which is possible because from the
definition of - <” - we have thatt, < (n+1) + 1.

Lemma A.22 Ift </ m+1,t <’ n, 6 </ m' and |6| =mthen |t - (G, fu) |y 1 = 101 O
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By structural induction on t. Cases ¢t = s and ¢ = ¢ are trivial. When ¢ = f;, we split cases on whether i = m
or i < m. If i = m, then the left hand side becomes: | fy - (G, i) ys1 = Lfww |1 = ba- The right hand side
becomes: | fmJZ 410 =Db,-0=0Dby,. Incase i <m,both sides are trivially equal to 6.i. When ¢ = b;, both sides
are trivially equal to b;. When t = A(t; )., the result follows directly from the inductive hypothesis for #; and 7,,
and the definitions of - and |-].

Lemma A.23 Ift </ m, |6| =m, 6 </ m’ and |6'| =m' then (t-6)-6' =t-(c-0').

Trivial induction, with the only interesting case where = f;. The left hand side becomes (f;-6) -0’ = (6.i)- 0.

The right hand side becomes f;- (6-6") = (6-06').i = (0.i) - 0.
Lemma A.24 [f || = m and |®| = m then idp -G = .

Trivial by induction on ®.

Lemma A.25 If [1], = [¢']) thent =1’

By induction on the structure of ¢. In each case we perform induction on ¢’ as well. The only interesting case
is when ¢t = f; and t' = b,. We have that [¢'] = f,,; so it could be that i = m. This is avoided from the implicit
assumption that ¢ </ m (that is required to apply freshening).

The main substitution theorem that we are proving is the following.

Theorem A.26 (Substitution)
Ifort: ' and ® -6 :Pthend® +t-6:1 -0

By structural induction on the typing derivation for ¢.

citel
-— D

Plyc:t
By applying the same typing rule we get that & |- ¢ : 7. By inversion of the well-formedness of X, we get that
e -7 :¢'. Thus from lemma A.14 we get that r </ 0 and from lemma A.18 we get that ¢ - 6 = . Considering also
that ¢ - 6 = c, the derivation @' I~ ¢ : 7 proves the desired.

Case

di=t
— D>
D fit
We have that f; - 0 = 6.i. Directly using lemma A.20 we get that ' +6.i:7-G.

Case

(s,s) €A
s:s
Trivial by application of the same rule and the definition of -.

Case

Phtiis @,k [n]g:s (s,s',5") e R
Case 7 >
N H(l‘l).tz 1S

By induction hypothesis for t; we get: @' ¢ -G:s.
By induction hypothesis for @, 7, - 5] 4, :s'and @11 -6 1= (0, fiay|) 1 (P,11) we get: @',11 -G [12] o (O, flor)) :
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s (G,f|q>/‘).

We have s’ = 5’ - (0, fig|) trivially.

Also by the lemma A.21, [12] g - (0, flr) = [12- O] -

Thus by application of the same typing rule we get ® + I1(¢; - ©).(f - ©) : s which is the desired, since
(I1(t1).1) -6 =I1(t; - ©).(t2 - ).

Prnis Db [n]gt  @FI(n). |/ Bl 05

D Aty).1p (). |1 ] B[l
Similarly to the above, from the inductive hypothesis for #; and #, we get:
oS f1-0:S
@110k [tr-6] g : 1" (0, fla))
From the inductive hypothesis for I1(t1). [#'] we get: @' = (TI(#1). [¢'] jg|4,) -0 : 5.
By the definition of - we get: @' = T1(#; - 6).([t' ||, -©) : 5.
By the lemma A.22, we have that (|1'] 4, -0) = ['- (0, fia))]
Thus we get &' - I1(11 -6). |7 (0, fia)) ] @41 cs'.
We can now apply the same typing rule to get: &' - A(t; -6).(12 - 6) : II(11 - ©). |- (O, fiar)) | FIE
We have I1(t; - ©). |- (0, fiar|) | @l = (t1-6).(([t' ]| 41) - ©) = (IL(t1)- [#'] |11 ) - O, thus this is the desired
result.

Case

|®|+1°

Qb M)  DFn:t

Ot [t/—| @ (idq),tz)
By induction hypothesis for 7y we get &' ;-0 : I1(-6).(¢' - ©).
By induction hypothesis for , we get &' +1,-6:1- 0.
By application of the same typing rule we get &' - (11 12) -6 : [t'- O] g - (ida, 12 - ©).
We have that [’ 614 - (ider, 12 - ) = ([t'] g (0. fla|)) - (iday, 12 - ©) due to lemma A.21
From lemma A.23 (-6) -6’ =t-(6-6’), we further have that the above is equal to [#'] 4 ((0, fia/|) - (ider, 22+ ©)).
We will now prove that ((0, fie/|) - (ide/, 2-6) =0, (t2-0).
By definition we have (G, fig/|) - (idg/, 12-6) = (6 (idg/, 12-6)), (fie| - (ide', 2-0)) = (0 (ide, 12
G)), - O.
Due to lemma A.16, we have that 6 </ |®'|. Thus from lemma A.19, we get that 6 - (idg/, 1) =
o idcp/.
Last from lemma A.13 we get that 6-idgs = ©.
Thus we only need to show that [¢'] g - (0, (t2-0)) is equal to ('] g - (ide,12)) - ©.
As above, per lemma A.23, this is equal to [t'] g ((ide,12) - ©).
From definition we have ((idg,%2) -6) = (ide - ©), (2 - ©).
Furthermore, from lemma A.24 we get that (ide - ©), (t - ) = G, (f2 - ©).
Thus we have the desired result.

Case

Case (otherwise) >
Simple to prove based on the methods we have shown above.

Corollary A27 [f ' Fo: Pand "+ 6’ : @' then ' +c-0' : P.
Induction on the typing derivation for ¢, with use of the substitution theorem A.26.
Lemma A.28 (Types are well-typed) If ® ¢ : ¢’ then either t' = Type or D1’ : s.

By structural induction on the typing derivation for ¢.
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c:tex

Case —— > Trivial by inversion of the well-formedness of X.
Pltyc:t
D.i= - : .
Case ——— > Trivial by inversion of the well-formedness of .
D fit
(s,5') € A

Case > By splitting cases for (s,s") and application of the same typing rule.

Y
sis
Phtis @ 0[] (s,s',5") e R

Case
D+ H([l).lz s

> By splitting cases for (s,s’,s”) and use of sort

typing rule.

O :I(t)t Pkt

bttty [t/—| || . (idqp,tz)
By induction hypothesis we get that ® - I1(z).t’ : 5. By inversion of this judgement, we get that @, 7 - [¢'] : 5.
Furthermore we have by lemma A.15 that @ |- id|| : P, and using the typing for 7, and lemma A.12, we get that
(R id|¢‘, 1 ((13, t).
Thus by application of the substitution lemma A.26 for [¢'] we get the desired result.

Case

Case (otherwise) > Simple to prove based on the methods we have shown above.

Lemma A.29 (Weakening) If ® -1 : ¢/, then ®,1,t,-+- ,t, 1t : 1.

Using lemma A.15 we have that ®,t;,1,--- ,t, - idg : P.

Using the substitution lemma A.26 we get that ®,1y,15,- - ,1, -1 -idg : ' - ide.

From lemma A.18 and A.14, we get that ¢ -idgp = ¢.

From lemma A.28 we further get @ ¢’ : s and applying the same lemmas as for r we get ¢’ -ide =17'.

B. Extension with metavariables and polymorphic contexts
B.1 Extending with metavariables

First, we extend the previous definition of terms to account for metavariables.

Definition B.1 (Syntax of the language) The syntax of the logic language is extended below. We furthermore
add new syntactic classes for modal terms and environments of metavariables.

tu=---|X;/o
T ::= [Pt
Mi=e|M, T

Now we gather all the places from the above section where something was defined through induction on
terms, and redefine/extend them here. Things that are identical are noted.

Definition B.2 (Context length and access) Identical to A.2. We furthermore define metavariables environment
length and access here.
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o] =0
M, T] = [ M|+1
M, T).M| = T
M, T)i = M.i

Definition B.3 (Substitution length) Identical to A.3.

Definition B.4 (Substitution access) Identical to A.4.

Definition B.5 (Substitution application) This is the extension of definition A.5. We lift it to modal terms.
(X;/0')-:0 = X;/(0-0)

Definition B.6 (Identity substitution) Identical to A.6.

Definition B.7 (Variable limits for terms and substitutions) This is the extension of definition A.7 and defini-
tion A.8 (who are now mutually dependent). The definition for substitutions is identical.

Xi/jo</n = o</n

X/o<ln < o<bn

Definition B.8 (Freshening) This is the extension of definition A.9. Furthermore we need to lift the freshening
operation to substitutions.

[Xi/ol, = Xi/([on])

e 15 .

[0, 1T, = ([0, 1T,

Definition B.9 (Binding) This is the extension of definition A.10. As above, we need to lift binding to substitu-
tions.
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1Xi/al, = Xi/(lon))

Lol = o

Lo, 1], = (Lol 1],

Definition B.10 (Typing judgements) The typing judgements defined in A.11 are adjusted as follows.

First, the judgement ® -t : t' is replaced by the judgement M; ® &t : t' and the existing rules are adjusted as
needed. Also we include a new rule shown below.

Second, the judgement - ® wf is replaced by the judgement M F @ wf.

Third, the judgement M; @\~ 6 : @' replaces the original judgement for substitutions.

The = X wf judgement stays as is, with the adjustment shown below.

Last, we introduce a new judgement = M wf for meta-environments and a judgement M =T : T' for modal
terms.

FXw

FXwf e ebygt:s (chgX
X wf F(X, c:t) wf

M; DFr:t

Mi=T T=[®]/ M ®+oc:d
M; ®-X;/o:t'-0

l
—

FMw
FMwE  ME [®]r: [D]s
o wf
F (M, [®]t) wf
MET: T
M; Pzt
M [®]t: [®]7

We can now proceed to adjust the proofs from above in order to handle the additional cases of the extension.

Lemma B.11 (Extension of lemmas A.12 and A.13) 1. Ift </ m and |®| = m thent - idp = 1.
2. If6 </ mand |®| = m then ¢ - idgp = ©.

The two lemmas become mutually dependent. For the first part, we proceed as previously by induction on ¢, and
the only additional case we need to take into account is for the extension':

We have that (X;/0) -id,, = X;/(0 -id,,). Using the second part, we have that X;/(c -id,;) = X;/o. The second
part is proved as previously.

'We will not note this any more below; all the proofs mimic the inductive structure of the base proofs
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Lemma B.12 (Extension of lemmas A.14 and A.16) 1. If M; ® ¢ :t' thent </ |®| and t <" 0.
2. IfM; @+ o:d theno </ ||, 6 <? 0 and |o] = |P|.

Again the two lemmas become mutually dependent when they weren’t before. For the first one, we have
that M; @ I X;/c : ¢/; using the second part, we have that ¢ </ |®| and ¢ <? 0. By definition we thus have
X;/o </ |®| and X;/c <” 0. The second part is proved as previously.

Lemma B.13 (Extension of lemma A.15) If M + ® wfthen for any ® and ty..., such that ® = ®, t|, tp,--- ,1,
and M = @' wf, we have that M; @' - idg : .

Identical as before.
Lemma B.14 (Extension of lemma A.17) If M - ® wf and |®| = n then for all i < n, ®.i </ i.
Identical as before.

Lemma B.15 (Extension of lemmas A.18 and A.19) /. Ift </'m,
t.
2. Ifo </ m,

o|=mandt-c=tthent-(0,t),ty, - ,1;) =

o'|=mand -0 =0, thenc- (o' ,11,t,--+ ,1,) = O

For the first part, taking ¢t = X;/c’, we have that X /6’ </ m and thus ¢’ </ m.
Furthermore we have (X;/0’) -0 =X;/(¢’-6) = X;/0,, assuming 6, = ¢’ - .

Using the second lemma we have that 6’ - (0,t1,1,- - ,1,) = O,.

Thus we also have that (X;/0’) - (0,t1,12,- -+ ,1,) = X; /(0" - (O, 11,12, - ,1n)) = X; /O
For the second part, the proof proceeds as previously.

Lemma B.16 (Extension of lemma A.20) If M F ® wf, ®.i=tand M; & +6: P, then M; ¥ +0c.i:t 0.

Identical as before.

Lemma B.17 (Extension of lemma A.21 and new lemma for substitutions) /. Ift </ m, t <’ n+1, 6 </ m’
and |6| =mthen [t-G|,, = [t] - (O, fur)-

2.If6' </ m o' <’ n+1,6 </ m and |6| = m then [6' -6}, = [6']" - (O, fr)-

The second part of this lemma is a new lemma; it corresponds to the lifting of the first part to substitutions.
For the first part, we have: [(X;/0’) o), = [X;/(6'-06)],, =Xi/[0'-G]),.

Using the second part, we have that this is equal to X;/([o’]) - (G, fu))-

Furthermore, this is equal to (X;/ [6']}) - (G, fur)-

Last, this is equal to ([X;/0’])) - (G, fur), which is the desired.

For the second part, we proceed by induction on ¢’

If 6 = e, the result is trivial.

If 6’ =0”t then [(6”, 1) -6, =[(6"-0), -6, =[c" G|, [t-C],.

Using the induction hypothesis and the first part, we have that this is equal to [6”]) - (0, fow), [1]}, (O, fur) =
[6”, t]" - (O, fuw), which is the desired.

Lemma B.18 (Extension of lemma A.22 and new lemma for substitutions) /. Ift </ m+1,t <’ n, o </ m’
and |6| = m then [t - (G, fur) |y i1 = [t] i1 - O

2.If6’ </ m+1,6' <Pn, 6 </ m' and |6| = m then | &' - (G, fur)|py 1 = |6 |ps) - O
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This proof is entirely similar to the above for both parts.

ol=m o</ m

Lemma B.19 (Extension of lemma A.23 and new lemma for substitutions) /. If ¢ <f'm,
and |6'| =m' then (t-6)-0' =t-(c-0).

2. Ifo1 </ m, |o| =m, 6 </ m and |6'| = m' then (6,-6)-6' =061 -(c-0).

Entirely similar to the above.
Lemma B.20 (Extension of lemma A.24) If |6| = m and |®| = m then idy -6 = G.
Identical as before.

Lemma B.21 (Extension of lemma A.25) 1. If [t} = [t'|) thent =1

2. If[o], =[o']) thenc =0

Part 1 is identical as before, with the additional case t = X; /6 and t' = X; /0’ handled using the second part. Part
2 is proved by induction on the structure of G.

Theorem B.22 (Extension of main substitution theorem A.26 and corollary A.27) 1. If M; ® ¢t : ¢ and
M, ®Fo:Pthen M; @ Fr-6:t-0.

22.IfM; @ Fo:Pand M; " +o' : @ thenM; " +o-0 : .

3 AME[@]r: [ @) and M; P+ 6: D then M+ [D)r-6: [P - 0.

For the first part we have, when t = X;/0:

From M; ® - X; /0y : ' we get that M.i = [Dp) 19, M;  F 6 : Dy and ' = 1y - Op.

Applying the second part of the lemma for 6 = 6y and 6’ = 6 we get that M; &'+ 6 -0’ : Dy.
Thus applying the same typing rule for t = X;/(0¢ - ) we get that M; @' I X; /(6o -0") : 19 (5o - 0).
Taking into account the definition of - and also lemma B.19, we have that this is the desired result.

For the second part, the proof is identical to the proof done earlier.

For the third part, by typing inversion for [®']¢ we get that M; @' 7 : 7.
Using the first part we get that M; ®+¢-6:¢ 0.

Using the typing rule for modal terms we get M - [®]¢- G : [®P]t

".o.

Lemma B.23 (Meta-variables context weakening) /. If M;® ¢ : ¢ then M, Ty,--- ,T,; @1 :1.
22.IfM;®+c:D then M, T, ,T,; P-o: P

3. If M @ wfthen M, Ty,--- , T, - P wf.

4. IfMET:T then M, Ty,--- , T, =T :T'.

All are trivial by induction on the typing derivations.

Lemma B.24 (Extension of lemma A.28) If M; ® ¢ : ¢’ then eithert' = Type or M; ® 1 :s.
When ¢ = X; /0, by inversion of typing we get M.i = [@']/", M; ®+oc:® and' =1"-o.

By inversion of well-formedness for M and lemma 4, we get that M - M.i : [®']s.

Furthermore by inversion of that we get M; &' 1" : 5.
By application of the substitution lemma B.22 for t” and 6 we get M; ® 1" - o : s, which is the desired result.
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Lemma B.25 (Extension of the lemma A.29 and new lemma for substitutions) /. If M; ® &t : ¢’ then
M; ®,t1,tr,--- 1 1.

2.IfM; @F6: P then M; D,11,60,-- 1, -0 : D

For the first part, proceed identically as before.
For the second part, the proof is entirely similar to the first part (construct and prove well-typedness of identity
substitution, and then allude to substitution theorem).

Now we know that everything that all the theorems we had proved for the non-extended version still hold.
We can now prove a new meta-substitution theorem. Before doing that we need some new definitions.

Definition B.26 (Substitutions of meta-variables) The syntax of substitutions of meta-variables is defined as
follows.

oy =e |0y, T

Definition B.27 (Meta-substitution length and access) We define the length of meta-substitutions and access-
ing the i-th element as follows.

o]
ol =0
lov, T| = |owm|+1
(YR
(on, T).low| = T
(ij[, T).i = Opn.l

Definition B.28 (Meta-substitution application) The application of meta-substitutions is defined as follows.
We mark the interesting cases with a star.

t-Onm

SO =

C O = C

fi-on = fi

bi-on = b

(7\.(1‘1).1‘2) ‘O = 7\.(1‘1 -GM).(t2~ij[)
(l‘l tz) - O = (ll 'GM) (l‘z 'Gj\/[)
(H(l‘]).l‘z) OM = H(l‘l 'GM).(l‘z‘ij[)
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’ t - o3 (continued) ‘

(h=n)-c

(COHV hn tz) O\
(reflt)-o

(symm t)
(transt; 1) - GM
(congappt1 12) -G
(
(
(
(
(

congimpl £ tz) o

conglam?) - o
congpit) -G
beta 1} 12) ij[
x (X;/0)-on
O - O\
® - O
(07 t) - OM
CI)'GM
) 'GJV[
(q), l) - OMm
T -0y

* ([@]1)-on

(t1-on) = (f2- o)

conv (t1 . GM) (tz . ij[)

refl (£ - o)

symm (- Oy)

trans (71 - o) (t2- o)
congapp (t1 - Gxt) (f2- O)
congimpl (t1 - Gxc) (72 On)
conglam (7 - Gy)

congpi (- o)

beta (¢ - o) (t2-On)
(03.0)- (6 Gx0)

G -0y, - Oy

D - 0oy, - Ot

[ o] (- Om)

Definition B.29 (Meta-substitution typing) The typing judgement for meta-substitutions is as follows.

MEeo:eo

Moy M

MET:T o

We proceed to prove the meta-substitution theorem.

The lemmas that we need are the following:

M (GM,

T): M, T

Lemma B.30 (Limits for elements of metasubstitutions) [f M I~ 6 : M’ and 6y.i = [®@]¢ then t </ |®| and

r<bo.

By repeated inversion of typing for 6y we get that M’ - oy¢.i : T’ for some M’ and 7”. By inversion we get that

M'; ®F1:t'. By use of lemma 2 we get the desired.

Lemma B.31 (Freshen on closed term) Ift <’ n then [t-c]" =

Easy by induction on ¢.

t-[ol,
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Lemma B.32 (Interaction of freshen and metasubstitution application) 1. If M oy : M then [t]), - oy =
(-0l
2. If M F oy : M then [G]), -0y = [0-On ]},

The first part is proved by induction on ¢. The interesting case is the metavariables case, where we have the
following.

[X;/o]) -om = (Xi/ [0]),) - Om =0n.i- ([C]), - Om) =On.i- [0-Ox ], based on the second part.

Now 0y.i = [®@] and the above is further equal to: 7 - [G - Gy ]},.. The right-hand side is rewritten as follows:
[X;/c-0on],, = [Om.i-(0-0n) ], = [t-(0-0n)],, =1 [G-0xn ], using lemma B.31 and also B.30.

The second part is proved trivially using induction.

n
me

Lemma B.33 (Bind on closed term) [ft <’ nthen |t-6]|" =t |0]
Easy by induction on ¢.

Lemma B.34 (Interaction of bind and metasubstitution application) 1. If M - oy : M/ then |t]), - oy =
£ -on]pm
2. IfMFE oy : M then |G}, -0y = [0-On ),

Similar to the equivalent lemma for freshen.

Lemma B.35 (Interaction of substitution application and metasubstitution application) /. (r - 6) - 63 =
(t-0)-(0-0)
2. (6-6")-on=(c-0x) (0" On)

In the first part, we perform induction on ¢. The interesting case is the metavariables case. We have:
((X;/0')-0)-on = (X;/(0'-0)) -0 = Oni.i- ((6'-5) - Ony).

From the second part, this is equal to: oy.i- ((6"- o) - (G- Gr))-

There exists a ¢ such that 6y.i = [®] and thus the above is further equal to:

t-((0"-om) (6-0n)) = (t-(6"-0)) - (0 Gy) based on lemma B.19.

The right-hand side is written as: ((X;/6’) - o) - (0-65) = (¢- (6" -)) - (- Gr). Thus the desired.
The second part is trivially proved by induction and use of the first part.

Lemma B.36 (Application of metasubstitution to identity substitution) idg - G = idp.q,,

Trivial by induction on ®.

Lemma B.37 (Redundant elements in metasubstitutions) /. [fM; @7 :¢ and |6y | =|M| thent- (G, Th, T, - -

- Oy\.
2.If M; @+ o : ¥ and |oy| = M| then - (o, T1, T2, -+, T,) = G- Oy
3. [fME @ wfand |oy| = M| then - (o3, T1, T2, ,T,) = DO
4. If MET : T and |6y| = M| then T - (o3, T1, T, -+, Ty) = T - Gy

By induction on the typing derivations.
Lemma B.38 (Type of i-th metasubstitution element) If - M wf and M - oy : M/ then M F oy i 0 (M.0) -

O\
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By induction and use of lemma B.37; furthermore using inversion of the well-formedness relation for M. Similar
to lemma A.20.

Theorem B.39 (Substitution over metavariables) 1. I[f M; ® 1 :t and M' - oy : M then M/; @ -Gy 110y :
t/'GM.

22.IfM; @6 : D and M' F oy : M then M'; @ -6y 00y : D - Oyt

3. IFME @ wfand M’ = Gy : M then M’ = @ - ¢ wf.

4 IfMET T and M' =65 : M then M' =T -0y : T' - Ot

Part 1 Proceed by structural induction on the typing of ¢.

citelx
—_— D>
M, Plyc:t
From inversion of the well-formedness of X we have that e;e -7 : s.
From lemma B.37 we have that 7 - oy =¢.
So the result follows from application of the same typing rule for & - Gy.

Case

di=t
—_— D>
M, dF f;:t
We have ¢ - 65¢ = (®- 0)).4, so using the same typing rule we get M'; @ - oy F f; 1 1- Oy

Case

(s,s') €A
— D
M, PFs:s
Trivial by application of the same rule and the definition of -.

Case

M; ®FH1:s M; @, 11 = [12] g i (s,s',s") € R
Case - >
M; d+ H(tl).l‘z Y

By induction hypothesis for ; we get: M/; @ -0y 11 -Gy s s.

By induction hypothesis for ®,7, = [1,] g : s’ we get:

M; d- O, t -Onm F [l‘z“ 0| O - s O .-

We have s’ = s’ - oy trivially.

Also by the lemma B.32, [12] ¢ - O = [12- O] )-

Thus by application of the same typing rule we get M'; @ -6y - I1(¢1 - Gp).(£2 - Onr) : 8" which is the desired.

M @bn:s M@ uk[n]g:! MeEO0n). [ !

|of+1 -5

M; @ A(t).1p : (). |1 Bl
Similarly to the above, from the inductive hypothesis for #; and ¢, (and use of lemma B.32) we get:
oN, PHH-ON s
oy, Doy t o {IQ-GM-IM)' 2t,-GM
From the inductive hypothesis for I(t1). [¢'] we get: M'; @0 = (I1(t1). [#' ] 11) - O 2 "
By the definition of - we get: M; @6 = II(t1 - ). ([#'] iy - O0) 1 8.
By the lemma B.34, we have that (|#'] g1 -0x) = |t' O] g 41-
Thus we get M; @ -6 FII(#1 - O)- (1 00t gy 41 1 8-
We can now apply the same typing rule to get: M; @ Gy = Aty - o). (f2 - ) : TI(t1 - O0v0)- [~ Ot 41
We have I1(t1 - 0. [t O] i 1 = II(t1 - 000)- ([ ] 1) - On0) = (TI(#1)- ¢ @41) - O, thus this is the desired
result.

Case >
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M; @ty TI(2).t M; 1t
M, P+t (l‘/—‘ @ (idq;,l‘z)

By induction hypothesis for 7; we get M'; @ -Gy b 11 - Gy : TI(7 - Gg). (1 - Ooyp).-
By induction hypothesis for t, we get M'; @ -Gy 12 - Oy 1 7+ Oy
By application of the same typing rule we get M’; @ -6 b (11 12) - Ot : [t O] g - (ida, 12 - Ov).
We need to prove that ([t'],g - (ide,72)) - O = [t O] g ({d-cp 572 - On).-

From lemma B.35 we have that ([t'] g - (ide,12)) - Oy = ([t'] g - O) - ((idw, 22) - Ov).

From lemma B.32 we get that this is further equal to: ([’ - Gy] o)) " ((ido,22) - O20).

From definition of - we get that this is equal to ([¢'- O ]|g|) - (ida - Oac, 12 O).-

Last from B.36 we get the desired result.

Case

Mi=T T=[@) M Pro:d

Case >

M; d+-X;/o:t" -0

Assuming that Gy¢.i = [®”]#, we need to show that M'; @ -Gy H7-(0-0y) : (/- 0) - Oy

From lemma B.35, we have that (#' - 6) -6yt = (' - o) - (G- o).

So equivalently we need to show M'; @-oy -1+ (6-0y) : (' Gy - (G- On).
Using the second part of the lemma for 6 we get: M'; @ -Gy F G- Gy : D' - Oy
From lemma B.38 we get that M’ = Gyy.i : M.i - Oyy.

From hypothesis we have that M.i = [®']7'.

Thus the above typing judgement is rewritten as M’ = Gy .i : [® - O]t - Oy
By inversion we get that 6(.i = [®' - 6] and that M; @' - o F 11 - Gy
** Now we use the main substitution theorem B.22 for ¢ and 6 - 6)¢ and get:
M; ®-opbt-(c-0n): (1" -0n): (G-On).

Case (otherwise) >
Simple to prove based on the methods we have shown above.

Part 2 By induction on the typing derivation of G.

Case —— > Use of the same typing rule, for @ - 65 which is well formed based on part 3.

M; PFo: P M; ®Ft:t-o . ) . ‘
Case Mo Dot (@7 > By induction hypothesis and use of part 1 we get:
M; Doy 00y : P - oy
M; ®-opbt-0y:(f-0) O
By use of lemma B.35 in the typing for 7 - ¢ we get that:

M; @y bty (' -on) (0-0n)
By use of the same typing rule we get: M'; @ -Gy F (G- Gy, 7-0np) : (D' Oyt - On)

Part 3 By induction on the well-formedness derivation of &.

Case M |- e wf >
Trivial use of the same typing rule.

ME @ wf M;CIJI—t:sI>

ME &, t wf
Use of induction hypothesis, part 2, and the same typing rule.

Case
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Part 4 By induction on the typing derivation for 7'.

M; Dbt
e———————— >
ME [®@]r: [D]r
Using part 1 we get M'; @ -0y b 7-0y 1 - 6. Thus using the same typing rule we get M/ - [® - Gy]7- Oy :
[®- Gy - Oy, which is the desired result.

Cas

B.2 Extension with metavariables and polymorphic contexts

In order to incorporate polymorphic contexts, we change the representation of free variables from a deBruijn
level to an index into a parametric context. We thus need to redefine the notions of length of a context, variable
limits etc. in order to be compatible with the new definition of free variables.

Definition B.40 (Syntax of the language) The syntax of the logic language is extended below. We use the
syntactic class T for modal terms and modal contexts, and the syntactic class K for their classifiers (modal
terms and context prefixes). Furthermore, we use a single context W for both extensions.

= | DX

n=-- | o, id(X;)

t=e|W K

n=s|c|filbi| M)t |t |[T(t)).t2 |81 =12 | convit |reflt | symm¢ | trans ¢ t, | congapp 1 1
| congimpl 71 7, | conglam ¢ | congpi ¢ | betat; t, | X;/o

T ::=[®]t | [P]D

K ::= [®D]t | [®P]ctx

Ii:=e|L -|I |X/|

-

Definition B.41 (Substitution length) Redefinition of B.3.

o] — .
‘07 t‘ = ’G’, :
|Gv id(Xl)| = |G|a |Xl|

Definition B.42 (Ordering of indexes) We define what it means for an index to be less than another index.

I < I, -whenI=TorI<T
I < I, |Xj|whenI=TorI<I

I < I'whenI=TorI<TI

Definition B.43 (Substitution access) Redefinition of B.4. We assume I < |G|.
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(o,1).I = twhen|o| =1
(o,1).1 = o.I otherwise
(0,id(X;)).I = twhen|c|=1
(0,id(X;)).I = o.Iotherwise

Definition B.44 (Context length and access) Redefinition of context length and context access, from definition

B.2. Furthermore we define length and element access for environments of contexts. Element access assumes
I<|®|

of = .
‘(D7 t| = |CD|7 ’
P, Xi| = |, |Xi]
(®,¢).I = twhen|D =I
(®,1).I = PIotherwise
(P, X;)I = X;when|®|=1
(P, X;)I = &Jotherwise

Definition B.45 (Extensions context length and access) New definition.

kd
o =0
(¥, K).|¥| = K
(¥, K).i = W.iwheni<|¥|

Definition B.46 (Substitution application) Extension of substitution application from definition B.5. The ap-
plication of a substitution to a term is entirely identical as before, with a slight adjustment for the new definitions
of variable indexes.

firoc = ol

(¢/,id(X;))-6 = 0o -0o,id(X;)
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Definition B.47 (Identity substitution) Redefinition of identity substitution from B.6.

ide = e
idp,, = ide, fio|
ido.x, = ido, id(X))

Definition B.48 (Variable limits for terms and substitutions) Redefinition of the definition B.7.

s</I

c<l1

fa<lr < I<T

bi<fI

Mt).) </'T = 1</ IAn <1

fhty<l1 = n</IAn <1
o </ 1
c,t</1 <= o</Int <1

o,idX;) </T <= o</IAI: (T, |X]) <I

c,id(0;))<’n <« o<’n

Definition B.49 (Extension of freshening) This is an extension of definition B.8 and adjustment for indexes.
We assumet </ Tand o </ 1. Alsot <) n+1 and 6 <’ n+1.

(111
[bn-‘;l = N
[bily = bi
(o]
(o]} = o
(o, t]} = [oly, [t]y
[0, id(X))]}] = [oly,id(X;)

Definition B.50 (Extension of binding) This is an extension of definition B.9 and adjustment for indexes. We
assume t </ Tand 6 </ 1. Alsot <’ n and 6 <’ n.
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I = bywhenI=T, -
LfI'H = fr otherwise

Jf = o
lo, 1]y = oy, Lty
I_G’ id(Xi)Hl

|
—
Q
—
—
\.-o
B
27

Definition B.51 (Environment subsumption) We define what it means for an environment to be a subenviron-
ment (be a prefix of; or be subsumed by) another one.

OCP
OCP,t = dCP
PCP. X, « dPCP

YPCY K « PO

Definition B.52 (Substitution subsumption) We define what it means for an substitution to be a prefix of
another one.

cCo

cCo
cCo,t = oCo
cCo,idX;)) <« oCo

Definition B.53 The typing judgements defined in B.10 and are redefined as follows.

. F X wfis adjusted as shown below.

. Fx @ wfis redefined as W -y ® wf, and the rules below are added.

. D1t is redefined as ¥, @+t : t', and adjusted as shown below.
D+ o: D is redefined as ¥V; @+ 6 : D and the rules below are added.
. ¥ wfis defined below.

. W T :K is defined below.

QA AW N~
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X wf o, 075 (chg X

F(Z c:t)wf
Yy & wf
Pdwl W, Dhrcs Phowt  W.i=[Pctx
P e wf W (D, 1) wi ¥ (D, X;) wf
citel PI=t Y dkns WP nE[n]g s (s,5',s") e R
Y, dlyc:t Y, - fi:t W, OFTI(t) .1 : 5"

¥ obn:s WO nk[n)g it WRRIN). [y 18 W@ TE)S W PFn
¥, @A) 1(n). |1 W Dkt 1] o (0o, 12)

“b" :

V.i=T T=[®] ¥ dtoc:d
¥, dFX;/o:t' -0

¥, dFo: P
Y, dto: P Y, drFr:t-o Y, do:d W.i = [®]ctx P X, CP

Y, Ohe:e ¥, dF (o,1): (P, 1) ¥; dF (0, id(X;)) : (P, X))

Y wf Y ®wf ¥ wt Y [@]r: [D]s
WY wf F (¥, [®]ctx) wf (¥, [@]r) wf
Y-T:K
Y, dtr:r Y- d, & wf
W [@]r: (D] Y+ [@]D : [P]ctx

Lemma B.54 (Extension of lemma 2) /. Ift </ 1 and |®| =1thent-idg =1.
2.Ifo </ 1and |®| =1 then ¢ - idp = ©.

Part 1 is proved by induction on # </ I. The interesting case is fy, with I' < L. In this case we have to prove
idp.I' = fy. This is done by induction on I’ < I.

When I =T, - we have by inversion of |®| =1 that & = @', ¢ and |®'| =I'. Thus ide = id®’, fy and thus the
desired result.

When I =T, |X;|, exactly as above.

When I =T, - and I’ < I*, we have that ® = ®*, ¢ and |®*| = I*. By (inner) induction hypothesis we get that
idg+.I' = fy. From this directly we get that ide.I' = fy.

When I =T*, |X;| and I’ < I*, entirely as the previous case.

Part 2 is trivial to prove by induction and use of part 1 in cases 6 = @ or 6 = &', 7. In the case 6 = &', id(X;) we
have: 6’ </ I thus by induction ¢’ -idg = ¢, and furthermore (o', id(X;)) -idp = ©.
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Lemma B.55 (Length of subcontexts) If ® C @' then |®| < |P/|.
Trivial by induction on ® C @'.

Lemma B.56 (Variable limits can be increased) /. Ift </ Tand1 <1 thent </ T
2. Ift <bnandn<n thent <’ n

3. Ifo</Tand1 <Y theno </ T

4. Ifo <P nandn <n' theno <t n'

Trivial by induction on ¢ or ©.

Lemma B.57 (Extension of lemma 2) 1. If¥; ® ¢ :¢ thent </ |®| andt <’ 0.
2. If¥;, ®o: ¥ theno </ |®|, 6 < 0 and || = |¥/|.

Part 1 is proved similarly as before.

Part 2 needs to account for the new case 6 = ¢*, id(X;).

By inversion of typing for ¢ we get that & = ®*, X; with 6* : ®*. By induction we get that 6* </ |®*|. Again
by inversion of typing for ¢ we get that ®*, X; C ®. Thus 6* </ |®| by use of lemma B.56. Furthermore from
®*, X; C ® and lemma B.55 we get that |®*|, |X;| < |®P|. Thus for I' = |®*| we have I, |X;| < |P| thus we
overall get 6 </ |®|.

Furthermore the other two parts of the theorem are trivial from induction hypothesis.

Lemma B.58 (Extension of lemma B.13) If ¥ - ® wf then for any ® such that ® C ® and ¥ + @' wf, we
have that ¥; @' | idg : ®.

Similar to the original proof. The new case for ® = @', X; works as follows. By induction hypothesis for @ we
get that ¥; @', X; - idg : ®'. Now for any environment ®* such that &, X; C ®*, by using the typing rule for
id(X;), we get the desired.

Lemma B.59 (Extension of lemma B.14) If ¥ + ® wf and |®| =1 then for all I < 1 with ®.I' =1, we have
oI </

Identical as before.

Lemma B.60 (Extension of lemmas B.15 and B.15) /. Ift <I1
2. Ifo</1,

ol=Lt-c=tandc C o thent-o’ =t

o|=1L06-6 =0,and 6 Co" thenc-¢" =o,.

Part 1 is identical as before. In part 2, in case 6 = o, id(X;), proved trivially by definition of substitution
application.

Lemma B.61 (Extension of lemma B.16) If ¥ - ® wf, ®I=tand ¥; ¥ +c: D, then¥; & o61:¢ 6.

The proof proceeds by structural induction on the typing derivation for G as before. In case ¢ = ¢*, id(X;), we
have that (®*, X;) C ®'. We have that ®*.1 = ®.I =1 (since I £|D*|, because (P*, X;).|®| At). Thus from
induction hypothesis for 6* we get that ¥; &'+ 6*.1: ¢ - 6*. Using lemma B.60 and also the fact that 6.1 = ¢* I,
we get that ¥; @' Fo.1:7-0.

Lemma B.62 (Extension of lemma B.17) 1. Ift </ L t <’ n+1, 6 </ I' and |6| =1 then [t-c} = [t]} -
(G,fI/).
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2.If6’ </ Lo’ <t n+1,6 </ T and |o| =1 then [¢' -6} = [6']] - (0, fir).

Part 1 is entirely similar as before, with slight adjustments to account for the new type of indices. Part 2 needs
to account for the new case of 6’ = 6", id(X;), which is entirely trivial based on the definition.

Lemma B.63 (Extension of lemma B.18) /. If t </ 1, -, t <" n, 6 </ I and |o| =1 then |t- (0, fv)]p . =
1o

2.If6’ </'1, -, 6 <"n,6 </ T and |6| = m then |6’ - (o, fy)]y,. = [0']}, .- .
Similarly to the above.

Lemma B.64 (Extension of lemma B.19) /. Ift </ 1,
2. Ifo; <1,

ol=Lo</Tand|c'| =1 then (t-6)-6’ =t-(6-0).

/=1L o</ and|o'| =T then (6,-6)-6 =06;-(c-0).

Part 1 is identical as before. Part 2 needs to account for the case where 6; = ¢, id(X;), which is entirely trivial.
Lemma B.65 (Extension of lemma B.20) If |6| =1 and |®| =1 then idp - 6 = ©.

We need to account for the new case of ® = @', X;. In that case, ide, x, = idg/, id(X;). By inversion of
lo| =I=|®'|, |X;| we get that 6 = ¢’, id(X;). By induction hypothesis we get idg -6’ = ¢’. By lemma B.60 we
getidg -6 = ¢'. Last it is trivial to see that (idg/, id(X;)) -6 = &', id(X;) = ©.

Lemma B.66 (Extension of lemma B.21) /. If [¢|{ = [¢']] thent =1'.
2. If [o]{ =[0']] thenc =0

Part 1 is identical as before; part 2 holds trivially for the new case of G.

Theorem B.67 (Extension of main substitution theorem B.22) 1. If ¥; ® ¢ : ¢ and ¥; & - 6 : © then
¥, dFr-o:t- 0.

2.If¥, @ to: Pand¥; " +06' : ® then?, @' 0-0' : D.

3IfYE (Dt [t and ¥V; PHo: D then P+ [®@]t-0: [P]t - o

Part 1 is identical as before; all the needed theorems were adjusted above, so the new form of indexes does
not change the proof at all. The only case that needs adjustment is the metavariables case.

Vi=T T=[@] ¥ do+toc:d

lP;‘Dl—Xi/G()Zl‘/ >
From ¥; ® - X;/0 : ' we get that W.i = [®¢] 1, ¥; D+ 6y : Dy and 1’ = 1y - Gp.
Applying the second part of the lemma for 6 = 6y and 6’ = 6 we get that ¥; &' - 6y -0’ : Py.
Thus applying the same typing rule for t = X;/(0¢ - ©) we get that ¥; @' - X;/(69-6') : 19 (G - 0').
Taking into account the definition of - and also lemma B.64, we have that this is the desired result.

Case

For the second part, we need to account for the new case of substitutions.

¥, d' o dy Y.i= [CI)()] ctx Dy, X; C P
Case ; - >
¥, '+ (o, id(X;)) : (Po, Xi)

By induction hypothesis for 6, we get: ¥; ®" -0’ : Py.
We need to prove that (P, X;) C @”.
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We have that ¥; " - ¢’ : @'.
By induction on (P, X;) C @ and repeated inversions of ¢’ we arrive at a 6" C ¢’ such that:
¥Y; " Fo": Dy, X;
By inversion of this we get that (®¢, X;) C ®”.
Thus, using the same typing rule, we get ¥; ®” I (6-0’,id(X;)) : (Po, X;), which is the desired.

For the third part, the proof is identical as before.

Lemma B.68 (Extension of lemma B.24) If V; ® |-t : ' then either t' = Type or ¥; ® 1 :s.

Identical as before.

Lemma B.69 (Extension of the lemma B.25) /. If¥; ®+t:t and ® C D' then ¥; ' ¢ 1.
2.If¥V; ®+6:9" and ® C &' then ¥, ' +o: .

Identical as before.

Lemma B.70 (Adaptation of lemma 4) [. I[f¥V;®+Ft:t' and ¥ CW then V', ®t1:1.
2. If ¥V, 0: P and ¥ CV¥ thenV'; d-o: D

3 IfYEDPwfand ¥ C¥ then V' + © wf.

4 If¥Y+T:Kand¥ CY¥ then W' T : K.

Parts 2 and 3 are trivial for the new cases; otherwise identical as before.

Now we have proved the fundamentals. We proceed to define substitutions for the extension variables (meta-
and context-variables), typing for such substitutions, and prove an extensions substitution theorem.

Definition B.71 (Substitutions of extension variables) The syntax of substitutions for meta- and context-
variables is given below.

Oy = e | Oy, T

Definition B.72 (Context, substitution, index concatenation) We define what it means to concatenate one
context (substitution, index) to another.

o,
D, (o) = &
D, (¥, 1) = (&, D)1
P, (¥, X)) = (&, CI)'), X;
o, o
o, (e) =
o, (0/,1) = (o0,0),1
o, (¢,id(X;)) = (o,0),id(X;)



L (o) =
L(@,) = (LI),-
LT, X[) = (L), [x]

Definition B.73 (Partial identity substitution) We define what partial identity substitutions (for a suffix of a
context) are.

id{q;} . = e
dgje,, = id@)a, flo/ e
idoje,x, = id@)e, id(X:)

Definition B.74 (Extensions substitution length and access) Defined below.
o]

of =0
ow. T| = 1+ov]

Definition B.75 (Extension substitution and context concatenation) We define concatenation of extension
substitutions and extensions contexts below.

Y, (o) ¥
Y, (¥, K) = (W.\¥),K
Oy, Ol
oy, (e) = oy
Owy, (G(Pa T) = (G‘Pa G(Il)7 T

Definition B.76 (Extensions substitution subsumption) Defined below.

/
oy C Gy

oy C Oy
oy Coy, I < oyCo|

Definition B.77 (Application of extensions substitution) This is an adaptation of definition B.28.
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® - Oy = e
(17 ) Oy = (I'O-‘I’)7 :
x (I, ]1X;])-op = (I-ow), |®'| when oy.i = [P]D
.fI'G\P = fI-G\y
(Xi/o)-op = t-(0-0Ow) when oy.i = [P]t
O - Oy
® - Oy = e
(0,1) Oy = O0-Oy, ! Oy
x (0,id(X;))-0y = OOy, ids,; when Cy.i = [®]|P’
P - oy
® - Oy = e
(Cb, l‘)-G\y = & .0y, 1 Oy
((I), X,‘) Oy = d- Oy, @' when Owy.l = [q)]qDI
T -ow
([®]t) o = [P-oy](t ow)
([@)@) .09 = [P -oy|(P ow)
K- -oy
([@]1)-o = [P-oy](t-ow)
([®]ctx) -0y = [P-Oy]ctx
Oy - Oy
o-cs(}, = e
(o, T)- 6y = Oy-0y, T -0y

Definition B.78 (Application of extended substitution to open extended context) Assuming that ¥’ does not

include variables bigger than X)y|, we have:

o Oy
(qﬂ, K) - Oy

Definition B.79 (Identity extension substitution) The identity substitution for extension contexts is defined

below.

V'-ow, K- (ow, Xjw|, - Xjw+w)
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ide = e
idy x = idy, Xy

Definition B.80 (Extensions substitution typing) The typing judgement for extensions substitutions is rede-
fined as W - 6y : V. The rules are given below. We also define typing for open extension contexts.

‘Pl—G\yilP/ ‘Pl‘TﬁK'G\y

Yhe:e Y (oy, T): (¥, K)
Y=Y wf
W
¥ EY wf

Lemma B.81 (Interaction of extensions substitution and length) /. |G| oy = |G- Oy
2. ‘CD’ -Oyp = ’CI)-G\{!‘

By induction on ¢ and .
Lemma B.82 (Interaction of environment subsumption and length) If ® C &' then |®| < |P/|.
By induction on ® C @',

Lemma B.83 (Interaction of environment subsumption and extensions substitution) [f ® C @' then P -
oy C o4 Owy.

By induction on ® C @',

Lemma B.84 (Interaction of extensions substitution and element access) /. (6.I) oy = (6-0y).I- Oy
2. (®I)-0y = (P-oy)I op

By induction on I and taking into account the implicit assumption that I < |c| or I < |®|.

Lemma B.85 (Extension of lemma B.30) If ¥ I- oy : ¥ and 6y.i = [®|t thent </ |®| and t < 0.
Identical as before.

Lemma B.86 (Extension of lemma B.31) Ift <’ nthen [t-c]" =t-[c]".

Identical as before.

Lemma B.87 (Extension of lemma B.32) /. If ¥+ oy : ¥ then [t]] -0y = [1- Oy ;lmp
2. If¥t oy : ¥ then [G]] -ow = [G- Oy

n
I-G\y
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Part 1 is proved by induction on ¢.
In the case r = b,,, we have that the left-hand side is equal to fi -0y = fi.¢,. The right-hand side is equal to

[by | ’I1-ch = fioy-
In the case t = X;/o, this is proved entirely as before, with trivial changes to account for the new indexes.
Part 2 is proved by induction on o, as previously. For the new case 6 = &', id(X;), the result is trivial.

Lemma B.88 (Extension of lemma B.33) Ift <” nthen |t-c]{ =t-|c]].
Identical as before.

Lemma B.89 (Extension of lemma B.34) /. If ¥+ oy : ¥ then |t]] -0y = |1 - Oy ;lmp
2. If¥t oy : ¥ then |G|} Oy = |G- Oy

n
I-G\y

Proved similarly to lemma B.87.

When 7 = fi, we have that the left-hand side is equal to b,, while the right-hand side is equal to | fi.cy | by.

I.oy =
Lemma B.90 (Extension of lemma B.35) /. (1-G) -0y = (t-Oy) - (G- Oy)
2. (0-0')-oy =(c-0y)- (0 -oy)

Part 1 is entirely similar as before, with the exception of case ¢ = fj. This is proved using the lemma B.84. Part
2 is trivially proved for the new case of G.

Lemma B.91 (Extension of lemma B.36) idy - 6y = idp.cy

By induction on &.

When ® = e, trivial.

When @ = @', 7, by induction we have idg - Oy = idg.cy. Thus (idg, fio'|) - 0w = iAo oys fioloy =
ey, farop| = idd.oy-

When ® = @', X;, we have that idg/.y,idey.i = idar.cy, op.i (by simple induction on &” = Gy.i).

Lemma B.92 (Extension of lemma B.37) 1. If¥; ®F1:1,
2.If P, o : D,
3V Dwf,
4. IfY+HT:K,
5. If K - oy is well-defined, and 6y C Gy, then K -6y = K - O,
6. If ¥ - oy is well-defined, and 6y C G4, then ¥ -6y =¥ - O,

oy| = |¥| and 6y C Gy thent -Gy =1 - Cy.

oy| = |¥| and 6y C Gy then G-Gy = G- Gy.

oy| = |¥| and oy C G\ then @ -6, = P - Gy.

oy| = |¥| and oy C 6l then T -6 =T - Ow.

Parts 2 and 3 are trivially extended for the new cases; others are identical or easily provable by induction.
Lemma B.93 (Extension of lemma B.38) If ¥ wfand ¥ - 6y : V' then ¥ - 6y.i : W'.i- Oy.

By induction on 6y and then cases on i < |Gy
If i = |ow| — 1 then proceed by cases for Gy.
If op = e, then the case is impossible.
If oy = o, @], we have by typing inversion for oy that W I [®]7 : (¥'.i) - 6, which by lemma
B.92 is equal to the desired.
If oy = 6{, [P]P’, we get by typing inversion for Gy that ¥ - [@]®’ : [¥'.i- 6{,] ctx which again by

lemma B.92 is the desired. )
If i < |ow| — 1 then by inversion of Gy we have that either 6y = 64, (@]t or 6y = Gy, [P]P'. In both cases

i < |o| — 1 so by induction hypothesis get 6,.i : ¥'.i - 6§, which, using B.92, is the desired.
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Lemma B.94 (Interaction of two extension substitutions) /. (I-oy)- oy =1I-(cy-0y)

3. (P-oy)- -0y =P (0y-0y)
4. (c-0y) -0 =06 (Cy-0y)
5.(T-oyp) -0y =T-(ow-0)
6. (K-oyp) -0y =K-(0p-0y)
7. (¥-op) -0y =¥ (op-0y)

Part 1 By induction on I. The interesting case is I = I, X;. In that case we have (I oy) - o = (I'- o) -
Gly, Op.i-Gl. Trivially 6y.i- 6 = (Gy - 6., and also using induction hypothesis, we have that the above is
further equal to I - (0w - 6,), (Ow - Gf,).i, which is exactly the desired.

Part 2 By induction on ¢. The interesting case is t = X;/c. The left-hand-side is then equal to (Gy.i- (G- Gy)) -
Oly, with 6y.i = [®]¢. This is further rewritten as (¢ - (G- 0y)) -6 = (t-0f) - ((0- Ow) - 6) through lemma
B.90. Furthermore through part 4 we get that this is equal to (- 6{) - (G- (O - G)).

The right-hand-side is written as: (X;/G) - (Cy - 64). We have that (Gy - 64).i = (0w.i) - 6 = [®- 6] (1 - Of).
Thus (X;/) - (G - O%) = (1 O%) - (G- (G- ).

Part 3 By induction on ®. When ® = &, X;, we have that the left-hand-side is equal to (® - oy) - 64, D' - Gl
with oy.i = [®|®'. By induction hypothesis this is further equal to @ - (oy - 6,), D - 6y,

Also, we have that (o - 6().i = [® - 6] D’ - 6. Thus the right-hand-side is equal to @ - (0w - 6Y), P’ - oy,
which is exactly equal to the left-hand-side.

Rest Similarly as above.

Lemma B.95 (Interaction of identity substitution and extension substitution) If |oy| = |¥| then idy - oy =
Oy

By induction on ¥. If ¥ = e, trivial. If ¥ =¥/, K then idy' g - Oy = (idy, X|y|) - Ow. From |oy| = [\| we
have that 6y = 6, T, and from induction hypothesis for 6{, we get that the above is equal to 6y, Xjy|-Op =
oy, T = ow.

Part 2

Lemma B.96 (Interaction of identity substitution and extension substitution) /. ¢ -idy =1t
2. D idy =

3.6-idg =0
4. T -idpg=T
5. K-idg =K

6. Oy - idy = Oy

All are trivially proved by induction. We will give only details for the oy case.

By induction on Gy. If oy = e, trivial. If 6y = 6}, T, then we have that (6, T) - idy = Gl -idy, T -idy. The
first part is equal to 6{, by induction hypothesis (and use of lemma B.92). For the second we split cases for 7.
We have ([®]7) -idy = [®-idy] (¢ -idy) = [®P]7, and similarly for ([P]D’) -idy = [P]D’, by use of the other parts.

Theorem B.97 (Extension of lemma B.39) /. If ¥; ®+r1:t' and V' oy : ¥ then V'; -6y 1.6y :t' - Oy.
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2.If P, dF6: D and V' oy : ¥ thenV'; @ -6y -6 -0y : & -oy.
JIfPHPwfand V' + oy : ¥ then P’ - © - 6y wf.

4 IfYFT:Kand¥' -6y : ¥ then Y T -0y : K - Og.

5 IfV'Foy:Yand '+ oy ¥V then ' F oy -0l : .

dI=¢
—_— D
W, oF i1
We have (- oy).I- oy = (P.I) - 6y from lemma B.84.

Part 1. Case

Vi=T T=[@] ¥, otoc:d

Case >
¥, dFX;/o:t' -0

From lemma B.93 get ¥' F Gy.i : (\P.i) - Oy.
Furthermore, this can be written as:
Y'Eoy.i: [@ oyt - oy.
Thus by typing inversion, and assuming oy.i = [®' - oyt get:
Y, @ -optt:t op. From part2 forc get¥'; @ oyt 6 -0y : D - oy.
From lemma B.67 and the above we get V'; ®-cyt1-(c-0y): (f'-0w) - (0-Oy).
Using the lemma B.90 we get that (¢ - 6y) - (G- Oy) = (' - G) - Oy, thus the above is the desired.

Case (otherwise) >
The rest of the cases are trivial to adapt to account for indexes from lemma B.39.

Part 2. The cases for 6 = e or 6 = ¢, t are entirely similar as before.

Y dho:d Wiz [dotx P, X Cd
Case >
¥; & (o, id(X;)) : (¥, X))

In this case we need to prove that ¥'; @ -6y - (G- Oy, idgy.i) : (P - Oy, Ow.i).

By induction hypothesis for ¢ we get that ¥/; ®- oy - G- 0y : D' - Oy.

From lemma B.93 we also get: ¥’ I Gy.i : W.i- Ow.

We have that W.i = [@’] ctx, so this can be rewritten as: ¥ b oy.i : [®' - 6] ctx.

By typing inversion get 6y.i = [®' - 6y] ®” for some ®” and:

W (@ op] @ : [@ - oyl ctx.

Now proceed by induction on @” to prove that ¥; @ - oy + (6 Oy, idgy.i) : (P O, Ow.i).
When @ = e, trivial.
When ®" = ®" t have ¥'; ® -0y I G- 0y, 0[] 0 - (@' - oy, @) by induction hypothesis. We
can append fia.y | a»| to this substitution and get the desired, because (|’ - oywl,|®"|) < |@-oy|.
This is because (@', X;) C @ thus (P’ - oy, D", ) C @ and thus (|- oy, |®"|, ) < |P|. When
" =", Xj, have ¥'; @ -0y - 6- Oy, id@r.ay o : (P - 0w, @”). Now we have that &', X; C P,
which also means that (' - oy, ", X;) C @ - 6y. Thus we can apply the typing rule for id(X;) to
get that ¥'; @ -6y - G- Oy, idi@r.ay o, (X)) : (P 0w, &, X;), which is the desired.

Part3. Case ——— >
Y e wf

Trivial.
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Y o wf Y, dHr:s
Y (D, 1) wf
By induction hypothesis we get ¥’ - @ - ¥ wf.
By use of part 1 we get that ¥'; & - W1 :s.
Thus using the same typing rule we get the desired V' - (® -V, ¢ - V) wf.

Case

YEDdwf  W.i=[D|ctx
Y (D, X;) wf
By induction hypothesis we get ¥’ - @ - oy wf.
By use of lemma B.93 we get that ¥’ I Gy.i : P.i- Oy.
We have W.i = [®)]ctx thus the above can be rewritten as ¥ - Gy.i : [® - Gy ctx.
By inversion of typing get that 6y.i = [® - 6y] D’ and that V' - ® - 6y, & wf. This is exactly the desired result.

Case

Y dlr:r
., >
Y [D]r: [Pt
By use of part 1 we get that ¥'; @ - oy -0y : 1’ - Og.
Thus by application of the same typing rule we get exactly the desired.

Part 4. Case

Yo, D wf
€ i >
Y [@] D : [D]ctx
By use of part 3 we get V' + @ - oy, D' - oy wf.
Thus by the same typing rule we get exactly the desired.

Cas

Part5. Case —— >
Y'ie:e

Trivial.

‘P’l—G\yt‘P \Pll—TZK-G\y
¥t (og, T): (P, K)
By induction we get ¥ F oy - o, : .
By use of part 4 we get ' =T -6y, : (K- Ow) - Gly.
This is equal to K - (Ow - Gy,) by use of lemma B.94. Thus we get the desired result by applying the same typing
rule.

Lemma B.98 If ¥ ¥ wfand V' 6y : ¥ then ¥’ ¥ - 6y wf.
By induction on the structure of P”.
Case ¥’ = e > Trivial.

Case V' =" (@]t >

By induction hypothesis we have that ¥/ - %" - 6y wf.

By inversion of well-formedness for ¥, [®@]r we get:

Y Y E [@]r: [D]s.

We have for G(I, = 0w, Xy, -+, Xjw|4|wr|, that Y 9. oyt G(P i
Thus by application of lemma B.97, we get that:
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Y, ¥ .oyt [®-0ylt-0y: [P-0yls.
Thus W', (P, [®]t) - oy wf, which is the desired.

Case V' =9 [®]ctx > Similarly as the previous case.

B.3 Final extension: bound extension variables

The metatheory presented in the previous subsection only has to do with meta and context variables that are free.
We now introduce bound extension variables, (which will be bound in the computational language), entirely
similarly to how we have bound and free variables for the logic. We will not re-prove everything here; all
theorems from above carry on exactly as they are. We will only prove two theorems that have to do with the
interaction of freshen/bind and extension substitutions.

Definition B.99 (Syntax of the language) The syntax of the logic language is extended below.

D= ’q),Bi
cu=---|o,id(B;)
t:=---|Bj/C
I:=--- |1, |B

All the following definitions are extended trivially. Application of extension substitution leaves bound
extension variables as they are. Bound extension variables are untypable.

Definition B.100 (Freshening of extension variables) We define freshening similarly to normal variables. We
do not define extension variables limits: we will use the condition of well-definedness later. (So if [t| %K is
well-defined, that means that it does not have extension variables larger than N + K).

[y
[o] = o
[Iu ~I = H—| )
|VI,X1-| = ’VI-| ) Xi
[I,BM+J'—| %,K = [I-| , XN+K7j71 when j<K
LB N = [I], B; wheni<M
M%K
(fﬂ%[( - fm%f_,(
H’J%K = b
Am)nlvg = Mnlvg)-[Llvk
[Xi/o] %,K = Xi/([o] AN/IK)
[Bu+j/0lyx = Xn:ix—j-1/([Glyk) when j <K
[Bi/s|Nx = Bi/([o]yg) wheni<M
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o] .
[D,1] = [P], [t]
[q)uxi—| = ’Vq)—|7Xl
’VCI),BM_;,_]']AN/{K = ’—(I)-l,XN_H(_j_] WhCIlj<K
[@,B;1\ « = [®], B; wheni<M
RﬂAN/I,K
[01 — o
[0,7] = [o], [7]
[Gvid(xi)-l = ’—({l?id(Xi)
[6,id(By+)) v g = [0],id(Xnsk_j—1) when j < K
[6,id(B) N & = [o], id(B;) wheni< M
TNk
(@] = [[®]]([t])
[[@®] = [[@]]([P])
(KN &
(@] = [[®]]([t])
[[®]ctx] = [[P]]ctx
[PV &
[’1%1{ = e
W KINg = [Nk, [KING"

Definition B.101 (Binding of extension variables) We define binding similarly to normal variables. Note that
this is a bit different (because binding many variables at once is permitted), so the N parameter is the length of
the resulting context (the number of free variables after binding has taken place), while N + K is the length of
the context where the bind argument is currently in.

Nk

o] — o
I_Ia'J = \_IJ,

[LXvij)y g = L1, Buik 1 when j<K
ILX |y = [IJ,X;wheni<N
LBNx = 1,8
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LfIJ%K - f[lm,(
[bil N« = b
[A(t1) 12 = Mlnlyg) )y
[ Xn+j/0|yx = Buik—j—1/(|0]) k) when j < K
1 X;/o N « = Xi/(LoJ,%K)whenKN
|Bi/olyk = Bi/([o]lyk)
[Nk
o] —
[P,1] = [P, 7]
LCI),XNHJANI_K = |®|, By when j <K
DX N, = |[®],X; wheni<N
\_q)7BiJNK = I_CDJvBi
I_GJ%,K
LOJ = e
lo,7] = |o], ]
lo.id(Xy 1))y, = lo],id(Buskj 1) when j <K
l6,id(X,) ¥« = |o],id(X;) wheni<N
l0,id(B:) ]y k = [o],id(B;)
TNk
[[@]t] = [[®]](lz])
[[@]®] = [[®]](|P])
K Nk
[@]t] = [[®]](lz)
|[®@]ctx] = [|P]]ctx
R
L.J%K = °
WKINe = [P KN

Definition B.102 Opening up and closing down an extension context works as follows:
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Teln = e

1IP7KrN = 11PTN71K[1%7‘\{:|
1N

leln = o

¥, Ky = [Ply, KISy

Now we prove a couple of theorems.

Lemma B.103 (Freshening of extension variables and extension substitution) Assuming |cy| = N, H% %
M k)
and [y g are well-defined, we have:

1 [T-ow]y = m (0w, Xy, -+, Xnik—1)

2. It GT—‘N’K = M “(ow, Xnr, -0, Xk 1)

3 [CI)'G‘P]AN/I/,K = [¢1%K (ow, Xy, -+, Xnrik—1)
4. lo G‘{"-I%,K: [olyk (0w, Xy, -+, Xnryk—1)
5.(T G‘F‘lﬂNl',K [ﬂ%l{ (ow, Xy Xnrik-1)
6. [K G‘PW%,K [KW%,K (ow, Xy Xn+k-1)
7. [¥ G‘I’—lAN/I’.,K Pﬂ%l( (ow, Xy Xnik-1)

Part 2 By induction on ¢ and use of the rest of the parts. The interesting case is t = By ;/sigma with
Jj < K. We have that the left-hand-side is equal to Xy x—;_1/ ({G-Gxﬂ%?,{), which by part 4 is equal to

XN/+K,J~,1/([61AN/{K-(G\;:, X, -+, Xnryk—1)- The right-hand-side is equal to (Xy4x—j—1/ [G]%K) (0w, Xy, -+

Xnvik—j-1/( [G]%K -(ow, X', -+, Xyr4x—1), which is exactly equal to the left-hand-side.

Part 7 By induction on . The interesting case occurs when ¥ =¥/, K
In that case, we have that the left-hand-side is equal to:

M
[\P/ - Oy, K- (G‘Fa XN’: B XN’+‘T,|)]N’7K'

Since K does not contain variables bigger than X|s,,| (since [K| % x 1s well-defined), we have that this is further
equal to:

PP/ Oy, K- G‘I"‘IIA\;]’,K

This is then equal to:

/' . . . .
[P - G\y—l%‘ x| K-ow] %JFK‘\P oul, Setting 6, = 6y, Xy, - -+, Xnr4x—1 We have by induction hypothesis and part

6 that this is equal to:
M M+|¥'-c
PP/]N,K Oy, [KWN,K‘ i -Oy.
The right-hand-side is equal to: [‘P’]%I’K - O, [K]AN/{JIQW (O, Xnipk—1, > Xnrk—14 |9

!
Since [va{;l‘?\ is well-defined, we have that it does not contain variables larger than Xy x_1, and thus we

have: - -
M+|¥ / M+ |¥ /
[Kiyg (04 Xvik—1, - Xvyk-14w = [Klyg O

Thus the two sides are equal.
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Rest By direct application of the other parts.

Lemma B.104 (Binding of extension variables and extension substitution) Assuming |cy| = N, H% x and
H%K are well-defined, we have:

1 |I-(ow, Xy, -+, Xnrsk— I)JN LIJAN/[,K'G‘P

2. [t-(ow, X, -+, XN/+K71)J1A\//I/K 1 J%K'G‘P

3. @ (0w, Xy, -+, Xnik— I)J =[P JNK'G‘P
4. [o-(ow, Xy, -, Xnyk— I)JN’K = LGJNK Oy
51T (ow, X, - Xvak—1) k= LT N g O
6. K- (0w, Xy, -+, Xnik— I)JN'K = LKJNK Oy
7. ¥ (0w, Xy, o Xwrgk— I)JN'K = LlPJNK Oy

Part 2 The interesting case is when r = Xy j/o6 with j < K. In that case, the left-hand-side becomes:

M
[ Xnrsj/ (0 (0w, Xnr, -+, Xnrek—1)) |y g = Busk—j-1/ ([0 (0w, Xyr, -+, Xy k1) k) = Bu/([o]y «
Gy) by part 4.
The right-hand-side becomes (Byrx—j—1/(|6|N ) - 0w = By / (|G} x - o).

Rest Again, simple by induction and use of other parts; similarly as above.

M M
Lemma B.105 /. ﬂIJ N‘K—‘NK =1

2. —M%KWZK_Z

s [lgl]) —e
4 _LGJ%K_ZK:G
5 _LTJ%K_Z’K:T
6. _LKJ%K_xK:K
7. _L‘PJ%K_I;K:T

Trivial by structural induction.
Lemma B.106 If [ow| = |¥| and |-[w| and |- ||y are well-defined, then 19" |y -0y =1¥" - Ow [y

By induction on "’

When W = e, trivial.

When W’ =¥ K we have that:

7, KTy =12 . [K] g g

Applying oy to this we get:

1" 1wy 0w, [K ) pwr - (0w, Xgr|, ) X g
By induction hypothesis the first part is equal to:
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]‘P” - Oy “\P/‘
Using lemma B.87 for the second part we get that it’s equal to:

’VK . G\P—‘ |, ||

Furthermore, since K does not contain variables greater than X|y|, we have that K -6y = K - (0w, Xjg|, -+ , Xjwr| 1 |pr|.
Thus, the left hand side is equal to PP” oy, K- (0w, Xjgr|, -+, Xl‘I”H\‘I’”ﬂ | which is equal to the right-
hand-side. 7

C. Definition and metatheory of computational language

Definition C.1 The syntax of the computational language is defined below.

ki=x%|k—k|II(K).k
ta=II(K)T|Z(K)T|MK).T|tT
lunit| L |t =T |t Xt |Ti+T |uo:kt|reft|Vo:kt|Ao:kT| T T2 |
e::=A(K).e|eT | pack T return (.t) with e | unpack e (.)x.(¢’)
| () |error | Ax:t.e|eé | x| (e, €) | proj; e | inj e | case(e, x.¢’, x.¢”) | fold e | unfold e | ref e
le:=¢|le|l|Aa:ke|et|fixx:Te
| unify T return (.t) with (.7 — ¢€’)
Fi=e|x:t|T,0:k
Yu=e|X l:1

Definition C.2 Freshening and binding for computational kinds, types and terms are defined as follows.

L
(*1%,1( = *
[T(K) KN g = TI(KIN &) [kInk
P{IAN/{K
O(K)tlyx = T(KIy ) [TIvk
Z(K)'ﬂ%K = Z(Uﬂ%[{) [WMH
ME) Tl = MIKINg)- [Tlig
TTW%K = ’—ﬂAN/{K ’—T-‘AN/IK
7 unit
J—-I%.K = 1

[k = [2]vk
[TIWNK X [TﬂAN/IK
[TI]NJ(“' (T2 ]n x
oL k.ﬂ%K = o [H%K' [tlvk
[ ref W%K

[ . Vo (k-|11‘\74.K' [N
Mo kalil e = hos (K13 [T
[

[

% a- - =
Ca + X =
b aAa a =
o SR NN S
» N =

I I I

M M M
T TZ—lN,K = [Tl—|N,K [TZ-lN,K



[e] AN/I,K

A(K).€]y ¢

e T]%K

pack T return (.t) with e %K
unpack e (.)x.(¢') 1y ¢

c
2.
=
<
Pﬂ
=
(]
—
c
=
S5
—
a
~—
z
=
>
€
=
AN
~—
—
|

A(TKTY ) Teln k.

[elNk [T1Nk

pack [T}%K return (. m%}l) with M%K
unpack [e]y ¢ ()x.([¢Tx k')

0

error

A [Ty - el ¢

[er vk [e2]y «

(Teln k- [€TN k)

proj; [d%l{

inj; [d%[{

case([ely x,x.[¢ 1N k. x. [¢"TN k)
fold [e]y &

unfold [e]

ref [e]% %

(311%1( = (62—|AN/I,K

! MN,K

l

Ao [k-|AN/IK [e-‘AN/[,K

[elN k [Nk

fixx: [T]N ¢ - [e]y &

= unify [TNx return (. [t k") with (PTN o [T/ TN & s e TN )

[*] %K
[TI(K) k|

Il
=
ol
ZR
T
o
Kad
==
~E

[TI(K). Ty
LZ(K)-TJ%K
)

MK)tng = MIKING)- LtV
[t TJ%MK = I_TJAN/[K I.TJAN4K
Lunit]y = unit



|t] AN/[ x (continued)

| LNk
[t = Tlyx = LT1JNK - LTZJ%K
[t xTlyx = U’lJNK x | Ta)y
[t+Tlyx = UIJNK+LTZJNK
o kM = o (k)M |
[ ref TJ%,K = ref [T J%K
WO“k'TJ%K = Va:lk J%K LTJ%K
Aokl = Ao [kJyg. TNk
It nlve = lulvg [Tlvk
LOCJAN/[,K = a
I_eJ%,K

[A(K).e]y = A(K|yg)- le]vk'

le TJ%K = LeJ?V/[K UJzA\/f[K

|pack T return (.t) with ej%,( = pack LTJ K return (. LTJM+1) with Ld%K

|unpack e (.)x.(¢) |y x = unpack [e]) ¢ ()x.(l¢' Iy i)

LOJN = 0

|error | %K = error

[Ax:T.e|yx = A M%K- LeJ%,K

le1 e |n = leink lealng

LXJ%K = X

(e, €’)J%K = (LGJ%JO LelJ%K)

Lproj; ey k = proj; LeJ%K

Linj; ej/,\v,”,( = inj; LeJ%K

[case(e, x.¢/, x.¢") |\ = case(le|y g, x. [¢]N k. x [ |N k)

[fold e |y = fold |e]y

|unfold eJ%K = unfold {eJ%K

| ref eJ%{K ref LeJ%K

ler:=ex|yk = lelyg = lealng

L!eJIA\/f{K = ! LeJN,K

1N & !

LAoc:k.eJAN/{K Aoc: kI - LeJ

le TJZJ://I,K LeJAN/I,K “JAN/[,K

[fixx: T.e]) ¢ fixx: [ T/N ¢ - Le)yk

Lunify T return (.7) with (B.77 = ¢)] = unify |73 ¢ return (. [1/3g") with ([ . [T/ vk L v k)

Definition C.3 Extension substitution application to computational-level kinds, types and terms.

k-G\p

(k—k)-op = k-oy—k-oyp
(H(K).k)-clp = H(K‘G\p).k-(?\y



2

K).e) oy
eT) - Oy

unpack e (.)x.(¢')) - ow

(
(
(pack T return (.t) with ¢) - oy
(
(

(II(K).t)- oy = II(K-Ow).T Oy
(Z(K).1)-opy = IX(K-Ow).T Oy
(A(K).t)-op = MAK-Ow).T-Op
(tT)-ogp = 1T-opyT 0Oy
unit- oy = unit
1 -ow = L
(11 > T) Oy = T Oy — Ty Oy
(T]XTQ)'G\}I = T;-Oy X Ty Oy
(Tl—l-Tz)-qu = T;:-Oy—+ Ty Oy
(ua: k.t)-0p = uo:k-Op.T Oy
(ref1) - ow = reft- oy
(Vou:k.t)-op = Va:k-Op.T-Oy
(Ao :k.T)-Oy = AU:k-Op.T-Oy
T1 Tz)'G\{l = T1 'Oy Ty Oy
o - Oy = a

= A(K-Oy).e oy

= e-OyT - Oy

pack T - oy return (.T- Oy ) with ¢ - Gy

unpack e - Gy (.)x.(¢' - ow)
0

error

AX:T-Oy.e Oy

e - Oy €/~G\p

X

(e-Glp, el-GqJ)

proj; ¢

inj; e - Ow

case(e- Oy, x.¢/ - Oy, x.¢" - Oy)

fold e - oy
unfold e - oy
ref e- oy

e -0y :=¢ oy
le- Gy

[

A0 k-Og.e- Oy
e-Oy T-Oy
fixx:T-Oyp.e- Oy

unify T - oy return (.T- oy) with (¥ - ow. 7’ - oy > €' - Gy)

® - Oy = e
(ILx:1)-0p = T Oy, x:T-Oy
(ILo:k)-op = T Oy, a:k-oy
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Definition C.4 The typing judgements for the computational language are given below.

- W wf Whikwf  WHE wf FY, KwE W KE k], wE
P wf Wk — K wf W T1(K) .k wi

W K TE [T g % W K TH [Ty * W, K TH [t]g tk
Y, I'FII(K).T:* Y, T'FE(K).T:* W T'EMK).: TI(K). (K] g
Y, I'-1:II(K).k YET:K YTk % Y, TH1:x
‘P;F}—tT:[kM\PM-(id\p,T) ¥: I' unit : x W:T'FL:% Y. T'FT =T

¥, T'k1:% W, T'k1:% W, T'k71:% ¥, Tt * Yk wf W, T, a:k-1:k

W, TI'F1 X1 % Y. T'FT+1: % VY. T'Fuo:kt:k
Y. TH1:% WY kwf W, T,a:k-T:% Yk wf Y.l o:kFt:k
Y. I'reft:x ¥: I'FVo:kt:x V:THA: kT k—K
YTkt k=K ¥:TI'F1:k (a:k)el
Y TH1 1K Y. IT'+a:k

¥, X T'ke:t

WK L TE fe]pg 0T ¥, % I'ke:TI(K).T Y-T:K
¥ % I'EA(K).e : TI(K). [T g WL TheT: 1]y, (idy, T)

YET: K W KTE[ty,:x ¥ ETEe: 1]y, (idy, T)
Y; X; T'F pack T return (.1) with e : £(K).T

¥V, L I'ke:X(K)T WK, 5T xe [Ty e
W; ¥; T+ unpack e (.)x.(e') :

7 L3 R

/‘| .

)1

T W, X ' () : unit
Y, o x:the: v

¥Y; X Tkerror:t ¥ X TFAx:te:t1—7
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Y2 The:t—T ¥ Y THe 1 (x:t)el Y. Y. Thkep:Tg Y. Y. Tke:T

Y, % Thee: v ¥, ¥ T'kx:7 W, X Tk (e, e2): T X Ty
¥, X The:T X1 i=1lor2 Y. ¥ The:T; i=1lor2
Y; X; ' proj; e : 7 Y, X IHinjje:t1+ 1

Y. % ITkhe:11+1T ¥, Lx:tiber it ¥, Lx:tmbey:t
¥; X; T'tcase(e, x.e;, x.€2) : T

Y, Thuo:kt:k Y, X, T'ke:tjua:kt/o) Tt -+ T,
Y, X T'Hfolde: (uat: k.t) T T -+ Ty

Y, THuo:kt:k Y, % The: (uo: k)Tt -+ Ty Y. Y:T'ke:t
¥; X; T'Funfold e : Tjuo: k.t/0) Ty T2 -+ Ty W; Y: T'lrefe:reft
Y. Y The:reft ¥ Y THe:n Y, Y. THe:reft (I:1)eX
Y Y TFe:=¢€ :unit ¥ Y THle:t W X, THI:reft
¥, I a:kkFe:t Y Y The:Ha: kt Y. T'F1:k ¥, %, I x:the:t
¥ Y. T'FAd: ke:Tlo: k.t ¥; X Thet:T[t/d WY Y T'Hfixx:Te:T
. . . !
YET:K W, KT [Ty, TH\P}M wf

¥, [¢] | =T i - K ¥, [¢'] ME T T [e] NMIEZE [ jwy,1 - (idhw, [T'] |\y\7|\y/\)

;X5 T unify T return (.7) with (9.7 + ¢') 1 ([] g ; - (idw, T')) + unit

YT wf Y I'+kwf YT wf Y. I'F71:x
Y e wf Y (T, o k) wf Y (T, x: 1) wf

X wf o oT:x%
e wf (X, 1:7)

Definition C.5 B-equivalence for types T is the symmetric, reflexive, transitive congruence closure of the

following relation. Types of the language are viewed implicitly up to B-equivalence. This means that the lemmas

that we prove about types need to agree on B-equivalent types.

(Aa: K1)t = 1[t'/0]

Definition C.6 Small-step operational semantics for the language are defined below.

vi=A(K).e | pack T return (.t) withv | () | Ax: e | (v, V') | inj;v | foldv || Ao : k.e

& =e|ET |pack T return (.t) with & | unpack € ()x.(¢') | E€ |vE|(E, e) | (v, E) | proj; € | inj; €
| case(&, x.e1,x.e;) [ fold & |unfold & [ref & | E:=¢ |v:=E|1E| &

uz=e|u l—vy
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(1. e) — ((u. € )lerror)|

/ /

(u,e)— (4, ¢€)

(u, Ele]) — (4, E[]) (1, Elerror] ) — error (1, (A(K).e)T ) — (u, [elo;-T)
(4, unpack (T, T)v ()x.(e') ) — (1, ([e'], - T)[v/x]) (1, (i) v) — (g, elv/x])
(u, proj(vi, va) ) — (u, vi) (u, case(inj; v, x.e1, x.e2) ) — (u, eiv/x])

—(l—_€p) I _cu

(1, unfold (fold v) ) — (1, v) (uorefv) — ((u, l=v), 1) (p,li=v)— (ull—=], ()
l—veu

() — (g, v) (1, (Aa:ke)t) — (u, elt/a]) (u,fixx:t.e)— (u, effixx:t.e/x])

Joy.(etow: [W], A [T'] opp 0¥ =T)
(u, unify T return (.7) with (P.7" — ¢€') ) — (u, inj; ([€] o O%))

EG‘P-(' Foy: PP-|0 AN {T/—| R Cy = T)
(u, unify T return (.t) with (P.7" +—¢€') ) — (u, inj, () )

(l—v)eu
(I—=v) € (ul—v)
I—=v) € (ul'—=V)<=(l—v)eu
(I:1)eX
(I:7v) € (E1:7)
(I:v) € (B I':7)y<(l:1)eX
u~x

(l—v)euy = Tn(l:1)eXNe; L 0kv:T
(l:1)eX = Fn(l—v)cuhe;X;ekv:T

(I:1)eX = (l:1)e¥

ull :=v), '—

(, "= V)= ]
[:=] wl—v

(u, L= V)]

Lemma C.7 (Computational substitution commutes with logic operations) /. [t[t'/ ocﬂAN/{ k=17l % [T 1% x /0]

119



2. v /el Jy g = TNk (1T Nk /o
3. (t[t'/a]) oy =1 oyt - ow/d
4. [6[1/0‘]1%1( = [dN,KHﬂN,K /ol
5. lelt/o |y g = lelnk[lt)vk /o]
6. (e[t/a]) -0y =e-oy[T-Ow/q]
7. [e[el/xﬂAN/[K = MAN{KHe’W,K/X]
8. lele'/xlInx = Leln 1€ INx /4
9. (e[’ /x]) oy = e- Oyl - Oy /x]

Simple by induction.

Lemma C.8 (Compatibility of 3 conversion with logic operations) If T =g 7’ then:

1. m%,K =B (T/—‘AN/[,K

M
2. LTJ%K =B W]N,K
3. 1-0p =37 -0y

In all cases it’s trivially provable by expansion for T = (Ao : k.71)T, and T = 7;[12/a and use of lemma C.7.
The congruence cases for other T, T’ are provable by induction hypothesis.

Lemma C.9 Assuming |Gy| = N, HAN/[ x and H% ¢ are well-defined for their respective arguments, we have:

1. [k-owly g = [KIN - (Ow, Xur, -+, Xnr k1)
2. [v-owly x = [TV g (Ow, Xnr, -+, Xk 1)
3. [e'GlP—I%QK = [d%l( (0w, Xy, -+, Xnrik-1)

By structural induction. We prove only the interesting cases.

Part 1 When k =TI(K).k', we have that the left-hand-side is equal to:

[T(K - 6w). (K- 0w) Ty x = TI( [K‘GLPTN/ ). [k owlyl

We have by lemma B.103 that (K -Gyl K= [K}M (ow, XN, -+, Xnr4k—1)-

By induction hypothesis we have that [k’ - Gxﬂ%“ [k’}MH (ow, Xy, -y Xyrik—1).
After expansion of freshening for the right-hand-side, we see that it is equal to the above.

Part 3 The most interesting case occurs when e = unify T return (.t) with (P.7’ — ¢’). We have that the left-
hand-side is equal to:

[unify T - oy return (.1- Gy) with (¥ - 6p.T' -Gy — ¢’ - Gw) |y &

By expansion of the definition of freshening we get that this is equal to:

unify [T -G h x return (.[T-Gw]at ) with (M- 0w h x . [T TNg O s T Tar ™)

The right—hand—éide is equal to: 7

(assuming 6 = Ow, Xy, -+, Xn'+k—1)
unify [T - ol retum(.m%;1 O with (TN ¢ -l [T 0 &Gl [ TN R - Oly)

In all cases, the respective terms match, by use of induction hypothes1s, lemma B.103, and also the fact that
W] =¥ ol
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Lemma C.10 Assuming |6y| =N, |-|\ x and L-JAN{K are well-defined for their respective arguments, we have:

L |k-(ow, X, -+, XN’+K71)J%,K = I_kJ%,K'GlP
2. |t (ow, X, -, XN’+K71)J%,K = [t]Nk O
3. le-(ow, Xnr, -+, XN’+K—1)J%,K = LeJAN/I,K‘G‘I’

Similarly as above, and use of lemma B.104.

Lemma C.11 1. (k-0y) -6y =k- (Cy-0l)
2. (1-09) -Gy =T (Cy-0Ol)

3. (e-ow) -0y =e-(Oy-0Yy)
By induction, and use of lemma B.94.

Lemma C.12 If oy C Gy, then:

1. If k- o is defined, then k- oy = k- G,
2. If t- oy is defined, then T- 6w =T- Oy
3. If e- O is defined, then e -Gy = e - G,
4. IfT- oy is defined, then T -6y =T"- Gl

Most are trivial based on induction and use of lemma B.92

Lemma C.13 [. If Y+ kwfand ¥' I 6y : ¥ then ¥' - k- Gy wf.
2IfY; THt:kand V' F oy : ¥ thenW; T -6y - T -0y : k- Oy.
3P, L The:tand V' -0y :PthenV; ;T -0yt e -0y :T-Oy.

We only prove the interesting cases.

FY KwWE W, K (K] g WE
W FTI(K) & wf
We use the induction hypothesis for ¥, K - oy - (0w, Xjy) : ¥, K and [k] to get:
\P,, K- oy + [k—‘ w1 (G\p, X‘qﬂ‘) wi.
From lemma C.9 we have that [k]y | - (0w, Xjw|) = [k O]y ;-
Therefore by use of the same typing rule we have the desired result.

Part 1 Case

W, K TE [t]g tk
Wi I'EMK).: I(K). (K] g0
We use the induction hypothesis for ¥/, K - (6w, Xjg|) : ¥, K and [7] to get, together with lemma C.9:
¥ K-oy; (0w, X|\p/‘) F [‘C-G\phqﬂm
By C.12 and the fact that ¥ - I" wf, we have that T"- (0w, Xjg/|) ="~ O, so:
lP/, K-op; ' opt [‘C~G\y-| w1 k- (G\y, X|\p/‘ : G\y)
By use of the same typing rule we get:
lP/; I Oy = A,(K G\p).(’C . G\p) : H(K G\p)( UO (G\p, X|\p/‘)J I\P,H).
We have that |k- (O, Xjg) | Wi = Lk]|,1 - o by lemma C.10, so this is the desired result.

Part2 Case
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Y, THr1:TI(K).k YET:K
W TETT: (k] (id, T)
By induction hypothesis we have:
YT -opkT Op: H(K-G\y).(k'()\p)
By use of B.97 for T we have:
YT -oyp:K-op
By use of the same typing rule we get:
YT oyt (‘C'G\y) (T'G\y) : [k-G\y-hqﬂLl : (idqﬂ, T'G\y)
Now we need to prove that [k -Gy ]y ; - (idw, T-0w) = ([k]y|; - (idw, T)) - Op.
From lemma C.9, we get that the left-hand side is equal to:
([k]jp),1 - (0w, Xjw))) - (idg, T - ow).
By application of lemma C.11 we get that it is further equal to:
([&]jg1) - (09, Xjw|) - (idyr, T - ow)).
By application of the same lemma to the right-hand side we have that it is equal to: ([k]y| )
((idpy|, T) - o).
Thus we only need to prove that (6w, Xjy|) - (idg, T -6y) = (idjg|, T) - Ow.
We have that the left-hand side is equal to:
oy - (idy, T-0y), T -0y = Oy -idy, T - Gy by lemma B.92.
Furthermore by lemma B.96 we have that Gy - idg = Gy.
The right-hand side is equal to:
id‘q.r| -0y, T -0y = oy, T oy due to lemma B.95.

Case

Part3 Most cases are proved as above, using the above lemmas. The most difficult case is the pattern matching
construct.

WET:K WK TE [ty x W[, wf

¥, qu @] - [T’] W, || K ¥, PP”] MR L I'E [e,] CIZE 7] 1P (idy, [T’] \ly\,\\y'q)

¥, Z; Tk unify T return (.T) with (9".7" — €') : ([]y; - (idw, T)) -+ unit
From W T : K and lemma B.97 we have:
YT -oyp:K- oy
From ¥, K; T'F [t]y ; : %, ¥ I wi, part 2 and lemma C.9 we have:
Y K-oyp;I'-opk [t-cﬂMl Tk
From ¥ - [¥"], wf and lemmas B.98 and B.106 we have:
Y'E [P oy g Wi
From W, PP”—‘ [P ;2 TF [e’} [, [P . [‘E-I [, (idly, T/), G{P = Oy, Xlll}/‘, e X|‘*P/‘+“P//~G\y|71 and lP/, PP” . Gly-l 9| F
Oy : (¥, [¥"]}y)), lemma B.97, lemma B.103, and lemma B.92 we have:
lP/, PPN . G\y—| | = [T’ . G\y-l AR ZEN :K-oy
Similarly for the same 6, and from W, [W"] g s X5 T'F [€'] g 1w : [T]j)1 - (idw, [T7] )y ), lemma C.9
and induction hypothesis, we get:
Y, [P ow] g B T-ow b [ 0wl gm.gy ([Tl (dw, [Ty jpr)) - O
Thus we only need to prove that ([T])y; - (idw, [T'] ) jpr))) - Op = [T 0w | g 1 - (idwr, [T 6@ [y jgr.y)-
In that case we will use the same typing rule to get the desired result, using a similar proof as this last step, to
go from [T- 6y |y - (idw, T -0y) to ([T] g - (idy, T)) - Oy.

Case
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So we now prove ([T]y ;- (idw, [T"] g jy)) Og = [T 0wy (idw, [T 0w ]| jwr.gy):
By lemma C.9 and lemma B.103, we have that the right-hand side is equal to:
([l w1 - (0w, X)) - (idwr, [T"] ) jwr) - O)-
By application of lemma C.11 we see that both sides are equal if (G, X)) - (idyr, [T'] @), Oly) =
(Id\{l, (T/-| |‘P\,|‘P”|) . G({,.
The left-hand side of this is equal to oy - (idw, [T"] )y O)s [T"] 1| jwr| - O
By lemma B.92 and B.96 we get that this is further equal to G, [T"] g yn| - Ol
The right-hand side is equal to idy - 64, [T"] g jpr| - O, Which is equal to the above using lemmas
B.92 and B.95.

Lemma C.14 . hkj%,(—‘M =k

2 [lehl], =7
3. “eJ%K-LA;K =e

Trivial by induction and use of lemma B.105.

Lemma C.15 (Substitution) /. If ¥, ¥; I, o : K, I'F1:kand ¥; T+ : k' then ¥, ¥'; T, I'[t'/o/] -
Tt /] k.

2.9, W 2T, 0 K, The:tand W; THT ik then ¥, W, X, T, I'[Y/d/] e[t /o] : [t /o).

IV, V20, X 7T, Uke:tand ¥, L, T v then ¥, ¥, E, T, I el /X] : .

Easily proved by structural induction on the typing derivations.

Let us now proceed to prove the main preservation theorem.

Theorem C.16 (Preservation) [fe; X; e l-e: T, u~ZX (u,e) — (u , € ) then there exists X' such that
YCY Y ~Yande; Y ; e¢ 1.

Proceed by induction on the derivation of (u, e ) — (4, e ). When we don’t specify a different ¢/, we have
that &/ = u, with the desired properties obviously holding.

(:ua e)ﬁ(‘u/ve,)
(,U, 8[6] ) — (lLl/ ) E[el] )
By induction hypothesis for (u, e) — (i, ¢’ ) we getaX suchthat X C Y, i/ ~ ¥ and e; X; e - ¢’ : 1. By
inversion of typing for &[e] and re-application of the same typing rule for &[e/] we get that e; X'; @ - E[¢'] : 1.

Case

Case (u, (A(K).e)T ) — (u, [elo,-T) >

By inversion of typing we get:

o, X o A(K).e: TI(K).T

oFT:K

T=[t]p, T

By further typing inversion for A(K).e we get:

o K;Z, ok [e]y,: 7

O =y

For oy = e, T we have o - (o, T') : (o, K) trivially from the above.
By lemma C.13 for oy we get that:
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o Y o [e-|071 T:7"-T.
Now it remains to show that t/- T = “r”JO J -T, which is proved by C.14.
o

Case (u, unpack (T, 1)v ()x.(¢') ) — (u, ([¢']o, - T)v/x]) >
By inversion of typing we get: /

o X o (T, v")v:X(K).T

o, Ky Xsx:[t]o - elg;:1

o, o T: %

By further typing inversion for (T, ) v we get:

,.C// — ,C/

o-T:K

o, Kol [T]y %

o: % ek v [Ty, (T)

First by lemma C.13 for ¢/, 6y = T we get:

o X x: [ty TH[ey, T:t-T.

Second by lemma C.12 for T we getthat t- T = 7.

Thus &; X; x: [t']g, - THJe']g, T:7.

Furthermore by lemma C.15 for [v/x] we get that e; X; e - ([¢’ To.1 - T)[v/x] : T, which is the desired.

Case (u, (A:te)v)— (u,elv/x]) >
By inversion of typing we get:

oY eFAx:Te:T =1

oY ev:T

By further typing inversion for Ax : T.e we get:
o Y:x:The:7T

By lemma C.15 for [v/x| we get:

o, X; o ¢[v/x] : T, which is the desired.

Case (u, proj;(vi, v2) ) — (u, vi) >
By typing inversion we get:

;X 0k (v, 1) T XT

T=T;

By further inversion for (v, v2) we have:
o; X; o v, : T;, which is the desired.

Case (u, case(inj; v, x.e;,x.e2) ) — (u, ei[v/x] ) >
By typing inversion we get:

o X el VT

o Y:x:Tile: T

Using the lemma C.15 for [v/x] we get:

o X elefv/x]:1

Case (u, unfold (foldv) ) — (u, v) >
By inversion we get: o; o - uot: k.7 1 k
o, X otfoldv: (uot: kv) T 1o - T,
T=T|ua: k)T T - T,

By further typing inversion for fold v:
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o X ek v T uo: k.t/a Ty T o T,
Which is the desired.

l—_¢u
(“7 refv)—>((;u7l*_>v)¢l)
By typing inversion we get: o; X; e v: T
ForY =X, [:tand 4 = u, [ — v we have that i ~ X' and e; X';e [ :ref 1.

Case

l— _€u -
(u, Li=v) — (ull =], 0)
By typing inversion get:
o, Y e [:reft
o Y o V:T
Thus for ¢/ = y[l — v] we have that ¢/ ~ X and e; X;e - () : unit.

Case

l—veu
Case >

(,Ll, 'l)—><:uvv)
By typing inversion get: o; X; e = [ : ref T
By inversion of u ~ X get:
e; ¥; o v : T, which is the desired.

Case (u, (Aa:ke)tv" ) — (u,e[t"/a]) >
By typing inversion we get:

o Y o Ao : k.e:Tlo: k.7

o017k

t="[t"/0]

By further typing inversion for A : k.e we get:
oY a:kke: T

Using the lemma C.15 for [t”/a] we get:

o, X; ot e[t"/a : U[t”/al, which is the desired.

Case (u, fixx:T.e) — (u, elfixx:t.e/x]) >

By typing inversion get:

o Y. x:The:1

By application of the lemma C.15 for [fix x : T.e/x] we get:
o, X ol effixx:T.e/x]: 7T

3(5\11.(. Foy: PPF|O VAN [T/—| 0w Oy = T)

(u, unify T return (.7') with (W'.T" = €') ) — (u, inj; ([ €] o OF))
By inversion of typing we get:
o-T:K
o, KXok [T]g, %
W]y [77]o0 K
;5o b [ g [V]0, - (T)
T=([]y - T) +unit
By application of lemma C.15 for 6y and [¢’] 0,jw| We get:

Case >
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o X ok [e]g g 0w ([T]g, - T')- 0w

All we now need to prove is that [t']o | - T = ([T']; - T') - Ow.

Using the lemma C.11 we get that:

(h/—‘o,l -T')-oy = [T/—IOJ (T"-ow) = ’—T/-‘O,l T

It is now easy to complete the desired result using the typing rule for inj;.

EG\{J.(O F Oy PP-IO A [T/—| 0, Oy = T)

(u, unify T return (1) with (P.7" +— ¢€') ) — (u, inj, ())
Trivial by application of the typing rule for inj,.

Case

Lemma C.17 (Canonical forms) If e; X;e v : T then

Ift=T1I(K).T, then Je such that v= A(K).e.

Aft=2X(K).7, then 3T,V such that v = pack T return (.t") withv' with v =g ©".
. Ift=unit thenv = ().

If T =11 = Ty, then Je such that v = Ax : T;.e.

If T =1y X Ty, then Jvy, vy such that v = (vi, vy).

If =11 + Ty, then IV such that either v = injy v or v =inj V.

CIft=(uo: k.U) Ty T2 - Ty, then V' such that v = fold V.

. If T = reft, then 3l such that v = [.

. If T = A : k.U, then Je such that v = A : k.e.

© % N LA W N~

Directly by typing inversion.

Theorem C.18 (Progress) Ife; X; o - ¢ : T and u~ X, then either u, e — error, or e is a value v, or there exist
u and €' such that u, e — u', €.

We proceed by induction on the typing derivation for e. We do not consider cases where e = v (since the theorem
is trivial in that case), or where e = E[¢’] with e /Av. In that case, by typing inversion we can get that ¢’ is well-
typed under the empty context, so by induction hypothesis we can either prove that u, e — error, or there exist
W, " such that u, E[e] — ¢/, E[€”] by the environment closure small-step rule. Thus we only consider cases
where e = £[v], or where e cannot be further decomposed into &[¢'| with € #e. Last, when we don’t mention a
specific ¢/, we have that ¢/ = u with the desired properties obviously holding.

o, Yo v:II(K).T o-T:K
;X et vT:[t]y,(T)
By use of the canonical forms lemma C.17, we get that v = A(K).e.
By typing inversion we get that K; X; e - [¢] 01" T.
So applying the appropriate operational semantics rule we get an ¢’ = [e], ;- T such that (u, e ) — (u, €").

Case

o, ev:X(K)T o K, X x:[1]g, k], :7 o 017 : %
Case : : >
o; X; o unpack v (.)x.(¢) : 7
By use of the canonical forms lemma C.17, we get that v = pack T return (.t”) with v/'.
Furthermore we have that [¢'], | is well-defined, so such will be [¢'] ; - T too.

Thus the relevant operational semantics rule applies.
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.Y etv:iT— 1T oY ek¢ 1

Case —
o Y. elve T
From canonical forms, we have that v = Ax : T”.¢”, so the relevant step rule applies.

o Y. el e: T XTy i=1lor2

Case -
o; X; el-proje:T;

From canonical forms, we have that v = (vi, v2), so using the relevant step rule for proj; we get that
(‘Ll, pI’Oji€>—><‘Ll, Vi)-

o Y. o V:T +T oY e x:TikFe T oY, e x:Toke:T

Case
o, X; o case(v, x.e;,x.€2): T

From canonical forms, we have that either v = inj; v or v =inj, V/; in each case a step rule applies to give an
appropriate €’.

e, el o kT k o X o v:(uO:kT)T Ty -+ Ty

Case
o; X; el unfoldv: tfua: k.t/of Ty T -+ T,

From canonical forms, we get that v = fold v/, so the relevant step rule trivially applies.

o Y okv:T

Case
o; Y; erefv:reft

Assuming an infinite heap, we can find a [ such that [ € u, and construct ¢/ = u, [ — v. Thus the relevant step
rule applies giving ¢’ = .

o X el v:reft

Case
o Y. oFlv:T

From canonical forms, we get that v = [. By typing inversion, we get that (/ : T) € ¥.
From u ~ X, we get that there exists V' such that (I — V') € u.
Thus the relevant step rule applies and gives ¢’ = V.

o X ov:Ilo: k.7 o, e Tk
Case ; >
;X elv1:7[1/0]

From canonical forms, we get that v = Ao : k.e. The relevant step rule trivially applies to give ¢’ = e[t/a].

o;Y; 0 x:The:T
Case - >
o Y. el fixx:Te:1

Trivially we have that the relevant step rule applies giving ¢’ = effix x : T.e/x].

oT:K o,K;ﬂ—(ﬂo,l:*
o [W], wf o [W], F[T] o K (W] ,: 2ok [€] ot [Tlog ([T] o w|) .
e; X; o I unify T return (.t) with (¥".T" — ¢') : ([t]y, - (T)) + unit
We have non-determinism here in the semantics, which we will fix in the next section, giving more precise

semantics to the patterns and unification procedure. In either case, we split cases on whether an Gy with the
desired properties exists or not, and use the appropriate step rule to get an ¢’ in each case.

Case
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D. Typing and unification for patterns
D.1 Adjusting computational language typing

First, we will define two new notions: one is a stricter typing for patterns, allowing only certain forms to be
used; the second is relevant typing for patterns, making sure that all declared unification variables are actually
used somewhere inside the pattern. Together they are supposed to make sure that unification is possible using a
decidable deterministic algorithm; so there is only one unifying substitution, or there is none.

We change the pattern matching typing rule for the computational language as follows:
PET:K W KT [ty P [y
’ / . / / . P /
W, [y [T] K relevant (2. [¥] [T " K) =9, [¥]
v, [ s T OF Ed i [Tl (ide, (7" )
¥ X5 T unify T return (.7) with (9.7 €)1 ([] g ; - (idw, T')) + unit

wi

kd

Then we define the stricter typing for patterns i,. This will be entirely identical to normal typing, but will
disallow forms that would lead to non-determinism (e.g. context unification variables allowed anywhere inside
a pattern).

Then we define the notion of relevancy for extension variables. For a judgement W;J, relevant (¥;J) = v,
where ¥ is a partial context, containing only the extension variables that actually get used. We will show that
functions used during typing and evaluation commute with this function.

Then, we prove that either a unique unification exists for a pair of a pattern and a term, yielding a partial
substitution for the relevant variables, or that no such unification exists. From this proof we derive an algorithm
for unification.

D.2 Strict typing for patterns

Definition D.1 (Pattern typing) We will adapt the typing rules for extended terms T, to show which of those
terms are accepted as valid patterns. We assume that the ¥ is split into two parts, ¥, ¥, where ¥, contains
only newly-introduced unification variables just for the purpose of type-checking the current pattern and branch.

Yi,¥, wf Y, ¥, ), [®]r: [P]s Yi,¥, wf Y, ¥, F,Pwf
Y, ewf Y, (Y, [P]r) wf Y, (Y, [P]ctx) wf
W W, T K
‘I‘,‘Pu;cbl—pt:t' Y Y, D1 s ‘I’,‘Pu}—pCI),CI)’Wf
¥, ¥, F, [@]r: D] ¥, ¥, b, (@)D : [®]ctx
W, Wb, @i
Y, ¥, -, dwf Y ¥, Pk,t:s
Y, ¥, ,ewf Y, ¥, (P, 1) wf
¥, ¥, F, P wf (¥, ¥,).i = [P]ctx i< | Y, dwf (¥, ¥,).i = [P]ctx i > ||
¥, ¥, F, (P, X;) wf Y, ¥, F,®, X; wf
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¥ ¥, dF,0: 9

Y W0k, 60 W WD,
¥, ¥, Pk ,e:0 Y, ¥, Pk, (c,1): (q)’, t/)

Y. ¥, PF,0:9 (¥, ¥,).i=[Pctx P X CP
¥, ¥,; dH, (0, id(X;)) : (P, X;)
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¥, ¥, dF, 1

c:teX PI=¢ (s,s') € A
¥, ¥, Pkt ¥, ¥, Pk, fit Y, ¥, Db,s:s

¥, W, PF,t:s Y, ¥, P, 1t [tz]‘q,‘ s (s,s',s") € R
Y, W, PF,II(t)) 12 : s”

\P7 lP”; CI)l_P n:s le lI!u, CI)y H l_p “2—‘ |q)‘ :tl \P, lPu; Cpl_p H(I]). LI/J |q>‘ ) :S/
W, W, t, Aty T1(1y). |1 ]

|®], -

W W, Db, 1)1 Y, ¥, Db, :t
‘P, lPu; b |—p Hhit: [t/—‘ || . (id<1>,l‘2)

Y, ¥, o, :t Y, ¥, dF,10:t Y, ¥, ®F,t:Type
Y, ¥, ®F,t =1 :Prop

(B, W,).i=T T=[) i<|¥ ¥ ¥;®F,0:d
¥ ¥, dH,X;/c:1 0

VY, ¥,).i=T T = [ i>|¥ Y ¥Y,;,dF,0:d P CP G = idg
P
Y. ¥, dt,X;/c:t-C

W, W, DF,rh W, W,; D, 1 : Prop V¥, db,t' =0
¥, W, DF,convit i

Y W, ok, :t Y, W, ®F,t =1t :Prop YW, Pt =1
Y W, O, reflty ity =1 Y, ¥, ®F,symmt, 1 =1

Y ¥, ®,t,:t1 =1 Y, W, P, =13
VY, ¥, &t transt, 1, 1 1) =13

Y, \Pu;q)l—ptaiMlez
Y P, D, M :AB W, W, D, 0N =N, P, P, PH,N, A
lP, Y, @Fl, congappt,tp : My Ny =M, N,

lP, Y. (I)Fp t, A=A
‘P, Y. CD,Al |—p “bil :B1 =B, ‘P, Y. CI)I—p Al Prop lP, Y. CD,Al |—p {Bfl : Prop
lP, \Pu; b l_p Congimpl t, (X(Al).tb) : H(Al). LBIJ = H(Az). LBQJ

¥, W, ® AL, [1]:B=B ¥, ¥,; PH,II(A).[B| =TI(A). |B'| : Prop
¥, ¥,; @, congpi (MA).1) : TI(A). |B] =TI(A). | B|

Y, ¥ ®,AF, [t,] :Bi =B ¥, ¥,; @, AA). |B1] =MA). |B,] : Prop
¥, ¥,; &+, conglam (A(A).1p) : MA). |B1] =AMA). |By)

lP7 lPu;q)pr(A)'M:A_)B lP’ lP”;(I)FI”]V:A va ‘Pu;q)FPA%BZType
¥, ¥,; &+, beta (A(A).M) Nl:%(A)_M) N = [M] - (ido,N)




Now we need to prove that all theorems that had to do with these typing judgements still hold. In most cases,
this holds entirely trivially, since the -, judgements are exactly the same as the - judgements, with some extra
restrictions as side-conditions. The only theorems that we need to reprove are the ones that require special care
in exactly those rules that now have side-conditions. As these rules all have to do just with the use of extension
variables, we understand that the theorems that we need to adapt are the extension substitution lemmas. Their
statements need to be adjusted to account for part of the substitution corresponding to the W part, and part of
it corresponding to the ¥, part (both in the source and target extension contexts of the substitution). Though
we do not provide the details here, the main argument why these continue to hold is the following: we never
substitute variables from W, with anything other than the same variable in a context that includes the same W,,.
Thus the side-conditions will continue to hold.

Theorem D.2 (Extension of lemma B.97) If V', ¥, -6y - (0w, Xjw|, -+, Xjw|1|w,|) : (¥, W) then:

LIfY, ¥,; ®tpt:t' thenV', ¥, -oy; -0y t,t -0yt Cy.
2.If¥Y, ¥y; PFp0: D then V', ¥, -0y; -0y, 6.0y : P oy
30, Wb, D wfthen W, W, -0y -, -Gy wf.

4. If¥, ¥, -, T :K then V', ¥, -0y, T -0y : K- Cy.

In all cases proceed entirely similarly as before. The only special cases that need to be accounted for are the
ones that have to do with restrictions on variables coming out of ¥,,.

Y, ®wf (¥, ¥,).i = [P]ctx i> ¥
Y, Y, F,®, X;wf -
We need to prove that ¥/, W -, ®- oy, X;- oy wf, where 6y = ow, Xjy|, -, Xjg|4p,. By induction
hypothesis for ¥, = e we get that ¥ -, ® - 6y wf, and because of lemma B.92 we get that also ¥ I-, ®- 6\, wf.
Also, we have that X; - Gy = X;_ |4 w|-
We have that (¥, ¥,,).i — |¥|+ |¥'| = [®@- 6] ctx.
Last, since i > |¥|, we also have that i — |\P| + |¥'| > |¥'].
Thus by the use of the same typing rule, we arrive at the desired.

Case

(Y, ¥,).i=T T =[] i>|¥| Y. ¥, dH,0:9 G = idgr -

Y. ¥, dF,X;/c:1 0
Similarly as above. Furthermore, we need to show that idg - 6 = idg.s(,» Which is simple to prove by induction
on @'

Case

Lemma D.3 (Extension of lemma B.98) If¥Y -, ¥, wfthen ¥ I, ¥, - oy wf.
Similarly to lemma B.98 and use of the above lemma.

D.3 Relevant typing

We will proceed to define a notion of partial contexts: these are extension contexts where certain elements
are unspecified. It is presumed that in the judgements that they appear, only specified elements are relevant; the
judgements do not depend on the other elements at all (save for them being well-formed). We will use this notion
in order to make sure that all unification variables introduced during pattern matching are relevant. Otherwise,
the irrelevant variables could be substituted by arbitrary terms, resulting in the existence of an infinite number
of valid unification substitutions.

Definition D.4 The syntax for partial contexts is defined as follows.
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Y=o |V K|V, 2
Definition D.5 Well-formedness for partial contexts is defined as follows.

FWYwf

FPwE P D] [@]s FPwE P-owf

o wf - (P, [®]1) wi (P, [@]ctx) wf

- (P, ?) wf

Other than the above change in the well-formedness definition, partial contexts are used with entirely the
same definitions as before. This means that if a typing judgement like ¥; ® 7 : ¢/ tries to access the i-th
metavariable, this metavariable should be specified in W rather than being the unspecified element ? — because

the side-condition ‘f’.i — K would otherwise be violated.

We proceed to define a judgement that extracts the relevant extension variables out of typing judgements that
use a concrete context ¥, yielding a partial context . We first need a couple of definitions.

Definition D.6 The fully-unspecified partial context is defined as follows.

unspec, = e
unspecy ¢ = unspecy, ?

Definition D.7 The partial context specified solely at i is defined as follows.

~

Y @i

i = unspecy, K when |¥|=1i
i = (Y@i), ?when |¥|>i

Definition D.8 Joining two partial contexts is defined as follows.

[ JoX ] = [

(P, K)o(V,K) = (Po¥), K
(P, No (P, K) = (Po¥), K
(W, K)o(¥,?) = (PoW), K
(P, 7)o (¥, ?) (Pod), 2

Definition D.9 The notion of one partial context being a less precise version of another one is defined as follows.

Yoy
ol o
(P, K)C (V,K) <« PCV
(@, NC (P, K) < PCP
(P, NC(V,?) <« YOV
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Definition D.10 We define a judgement to extract the relevant extension variables out of a context.

~

relevant(YFT7:K) =¥

Y. dFr:f Y. D¢ s
relevant

W @) [0/ ) = relevant (¥; ®+1:1)

Wi o, & wf ,
relevant . = relevant (W - @, @ wf)
Y [@D : (D] cix

~

relevant (¥ - @ wf) =¥

Y+ o wf Y, dtr:s
relevant | ——— | = unspecy relevant =relevant (¥; ®+1:s)
Y e wf Y (D, r) wf

Y+ P wE (¥).i= [<I>] ctx
relevant
Y (P, Xi) wi

> — relevant (W F @ wf) o (P @i)
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‘relevant(‘P; DHr:t) :‘f“

c:teX dI=t¢
relevant | —— | =relevant (¥ - @ wf) relevant [ ——— | = relevant (¥ I~ ® wf)
Y, drc:t Y, dF f1:t

(s,s) € A
relevant | ————— | =relevant(¥ F ® wf)
Y, dlLs:s

relevant

W, Ot s ¥, ®, 1+ [tﬂm s (s,s",s"
W, OFTI(1) .10 8"

eR
) ) = relevant (‘P; D, 11+ [12] g :s’)

relevant

W @bn:s W@k [n]g:r ‘P;CIDI—H(tl).Lt’J|¢“:s’
W dFA(n).L (). |/ ] B

relevant (‘P; D, 11 F [12] g :t')

(‘I’;CI)I—tl TI().f W, Pron it
relevant

_ = relevant (\¥; ® 1, : T1(z).t") orelevant (¥; ® 1, : 1)
¥, Cpl—l‘l f: (l‘/—“q)r(ldcp,lz) ) ( )

<‘P;d>|—t1:t Y, Ot ‘P;d)l—t:Type)
relevant

Y, &1 =1 :Prop

WP).i=T T=[®]/ V¥, Proc:d
relevant (¥; ® 1 : r)orelevant (\¥; @+ 1, : 1) relevant ;
Y, dFX;/o:t' -0

|| —i times

o~ _
(relevant (| [@']¢ : [@]s),?,2,---,?) orelevant (¥; @0 : D) o (Y @i)

relevant

Y, dFr:n Y; &1 : Prop e e
Y. dFconvrt it

relevant (¥; ® ¢ : 11) orelevant (‘P; b+ = tz)

(lp; DLt :t WDkt =1:Prop
relevant

=relevant (¥; ® 1 : 1)
Y, dreflty it =1

Y. dlt,:t1 =1
relevant =relevant(¥; ®+1,:1 =1,)
Y; ®Fsymmz,:th =1t

Y, drt,:t1=1 Y, Okt :0=1;
relevant
WY, dFHtranst, t, it =13

relevant(¥; ® b1, : 1y =n)orelevant (P; @1, : 1 =13)

relevant

Y, dkt,: My =M, ¥, d+-M;:A—B Y, L1, :N =N, Y, d-N;:A
W¥; & congappi,t,: M{ N| =M, N,
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relevant

Y, dtH1,: A=A ¥, P A+ [l‘b-‘ ‘B =8B Y, dHA;: Prop Y¥; A F (Bl“ : Prop
¥; @+ congimpl #, (A(A1).tp) : TI(A1). |B1] =T1(A2). B2

relevant(W; ® F1,:A; = Aj) orelevant (V; ®,A| F [1,]| : By = Ba)

<\11; @, Ak [5,]:B=B ¥ ®FII(A).|B] =II(A). |B]: Prop)
relevant =
¥; @+ congpi (MA).1) : TI(A). |B] =TI(A). | B|

relevant (W; @, A+ [1,] : B=B')

| ¥, CI),A" ’—l‘b—‘ :B1 =8B ¥, qD")u(A).LB]J :}\,(A).LBZJ :Prop B
relevant W, & I conglam (M(A)45) : MA). |B1] = MA). B2 -

relevant(¥; ®, A+ [#,| : By = By)

| t Y, O-AMA)M:A—B ¥, PFN:A Y, dFA — B: Type
relevan —
¥; @+ beta (MA).M)N: (MA).M)N = [M]-(idp,N)

relevant(¥; @+ A(A).M :A — B)orelevant (¥; P-N:A)

Y, dFo:d

relevant | ———— | = relevant (¥ I~ ® wf)
Y, OHe:e

(‘P;CI)I—G:CI)' Y. dtr:t-o
relevant

= relevant (¥; ®+ o : D) orelevant (¥; ®+r:¢ -
¥, d+ (o, 1): (P, 1) > ( Jo ( )

(w; Pto:d  (P).i=[P]ctx D, X CP
relevant

=relevant (¥; ®+c: d'
¥ @+ (o, id(X))) : (P, X;) ) ( )

Lemma D.11 (More-informed contexts preserve judgements) Assuming g C R

LIPHT:Kthen®' T :K.

2. If P+ @ wfthen P+ ® wf

3P D1t thenV; dFt: 1.

4 IfV; dFo: D thenV; dFo: d.

Simple by structural induction on the judgements. The interesting cases are the ones mentioning extension

variables, as for example when ® = @', X;, or r = X; /6. In both such cases, the typing rule has a side condition
requiring that ¥.i = T'. Since ¥ C ¥, we have that W'.i = T.

Lemma D.12 (Relevancy is decidable) 1. If'W+ T : K, then there exists a unique W such that relevant (% + T : K) =
Y.
2. If ¥ = ® wf, then there exists a unique W such that relevant(W = @ wf) = P,

3. IfW; @11, then there exists a unique W such that relevant(¥; @+ :1') = .
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4. If¥; @ 6 : P, then there exists a unique W such that relevant(\¥; ® o : @) = P,

The relevancy judgements are defined by structural induction on the corresponding typing derivations. It is
crucial to take into account the fact that - ¥ wf and W = & wf are implicitly present along any typing derivation
that mentions such contexts; thus these derivations themselves, as well as their sub-derivations, are structurally
included in derivations like W; ® 7 : ¢’. Furthermore, it is easy to see that all the joins used are defined, since
in most cases two results of the relevancy procedure on a judgement using the same context ¥ are joined, which
is always well-defined. The only case where this does not hold (use of extension variables in terms), the joins
are still defined because of the adaptation of the resulting p by affixing the unspecified elements.

Lemma D.13 (Properties of context join) /. @1 o @2 C y 1
2.9 0P, C Y,
3. @1 o‘/I\’z = ‘/1\12 o‘/I\Jl
4. (P10P) oW =T 0(P,0%;)
5. If(pl C (I\’z then (I\!l O(pz = {I\’z
6. If W) C W, then ¥ 0¥, C W, 0P,
All are simple to prove by induction.
Lemma D.14 (Relevancy when weakening the extensions context) /. [f ¥+ T : K, then relevant(¥, W'+ T : K) =
|
—
relevant(W+T:K),?,--- 2.
[
—
2. If ¥+ ® wf, then relevant(¥, V' F ® wf) = relevant(¥ - ® wf),?,---, 7.
|
—
3. I, @11, then relevant(¥, ¥V'; @+t :1') = relevant(\¥; @+t :¢),2,--- 2.
|
—
4. If P, @+ o : D, then relevant(P, ¥'; @+ o : D) = relevant(¥; ®+o:P'),2,--- 2.

Simple to prove by induction.

Lemma D.15 (Relevancy of sub-judgements is implied) /.(a) relevant(¥ - ® wf) C relevant(\P F @, @' wy)
(b) relevant(\P - @ wf) C relevant(\¥; @+t :1')
(c) relevant(¥ - ® wf) C relevant(¥; ®+ o : @').
2.(a) If ¥; ®t1:1 then relevant(¥; @, &' t1:1') = relevant(¥; @+t :t') o relevant(¥ - @, @ wy).
(b) If ¥; @t : D then relevant(V; @, "+ 6 : @) = relevant(¥; @+ o : ') o relevant (¥ - ®, " wy).
3(a)If P, Pttt and\¥V; ®F 1 : s then relevant(\V; @+ 1 : s) C relevant(¥; &1 :1t').
(b) If ¥; @'+ o: P then relevant(¥ + ® wf) C relevant(¥V; @' o : ®).

4(a)If ¥, ®rt:1t and ¥; '+ 6 : ®, then relevant(¥; &' +t-6:1'-6) C relevant(¥; ®+1:1') o
relevant(\¥; @'+ o : ).

(b)If ¥, dFo:Pand¥; "+ o : P, then relevant(¥; " +c-6': @) C relevant(¥; &' o :P)o
relevant(\P; ®" o’ : @').

Part 1(a) Trivial by induction the derivation of relevancy.
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Part 1(b) By inversion of the derivation of relevant (¥ - ® wf) = . In the base cases, this is directly proved
by the relevancy judgement; in the case where we have relevant (¥; ® ¢ :¢') = relevant (¥, ®, 1, F 1, : 13),
by induction hypothesis get that relevant (¥ - ®, #; wf), which by inversion gives us the desired; in the
metavariables case trivially follows from repeated inversions of relevant (¥; ® - ¢ : @').

Part 1(c) Trivial by induction and use of part 1(b).
Part 2 By induction on the typing derivations of ¢ and " all cases follow trivially.

Part 3(a) By induction on the derivation of ¥; ® ¢ : ¢

Case r = ¢ > Simply using the above parts and the fact that ¥; e -’ : 5, we have that relevant (\¥; ® ¢ :s) =
unspecy o relevant (¥ = ® wf) = relevant (¥ - ® wf) C relevant(¥; ® 1 : ).

Caset =s > Similarly as the above case.

Casetr =vy > We have that ¥; ®|j- ®.1: s, by inversion of the well-formedness derivation for ®. Therefore
relevant (\P; @ -1’ :s) = relevant (¥; @11’ :s) o relevant (¥ - ® wf). By repeated inversion of ¥ - & wf
we get that relevant (¥ F (@[5, ®.I) wf) C relevant (W - & wf). Thus we have that relevant(¥; ®+¢':s) C
relevant (¥ - @ wf), which proves the desired.

Caset =TII(t;).t, > Trivially from the fact that relevant(¥; ® - 5" : s"") = relevant (¥ F ® wf) C
relevant (¥; ®,¢ + [12])

Caset = A(f;).r, > We have that relevant (\P; @ - I1(#). 7] : s") =relevant(¥; @, 1, F [|']] :s) =
relevant (¥; ®, t; -1 : 5). So by induction hypothesis, since ¥; ®, 7; -1 : s is a sub-derivation in ¥; ®, 1, -
[12] : 1, we have that relevant (¥; @, t; -1’ : s) C relevant (\P; ®, 1, b1, : '), which is the desired.

Casetr =1 1, > By induction hypothesis get that relevant (\W; ® +I1(¢).t" : s) C relevant (\W; @+ 1, : I1(z).1").
(Here we assume unique typing for I1 types). Furthermore, we have that relevant(¥; ® -TI(z).t':s) =
relevant (\P; ®, ¢+ [1'] : s). Otherwise, it is simple to prove that relevant(¥; @t (ide, 1) : (P, ['])) =
relevant (¥; ® -1, : [¢']), thus the desired follows trivially following part 4.

|®|—i times

/_/H . .
Caser =X;/c 1> We have that relevant(¥; @' 1 :s) = relevant (¥|;; @' ¢ :5), 2,---,? from inversion
of well-formedness for . Furthermore, we have that ¥; ® - ¢ : & from typing inversion. Thus, using part
|¥|—i times
—
4, we get that relevant (¥; ® 1" -c: s) C (relevant (¥ |;; @' 1" :s), ?,---,? )orelevant (¥; &+ o : @'). Thus
the result follows directly, taking the properties of join into account.

Caser = (tj =t,) > Trivial.
Case t = convtt' > By induction hypothesis we get that relevant (W; ® ¢, =1, : Prop) Crelevant (¥; ® ¢ : ¢

l =
By inversion of relevancy for ; =, we get that it is equal to relevant (¥; ® | ¢, : Prop) orelevant (¥; @+, : Prop) C
relevant (¥; ® | 1, : Prop). Thus the desired follows trivially using the properties of joining contexts.

1‘2).

Case (rest) > Following the techniques used above.

Part 3(b) By induction on the derivation of ¥; ®' I G : ®.
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Case c = e > Trivial.
Case 6 =¢', ¢ > By induction hypothesis for ¢’, use of part 3(a) for ¢, and definition of relevancy for ®.

Casec =0, id(X;) > By induction hypothesis for ¢’, and also using the side condition for X; being
part of @': by inversion of well-formedness for @', we get that ¥ @i C relevant (¥ I~ & wf) and thus also
Y @i C relevant (¥; @'+ 6 : @), proving the desired.

Part 4(a) By induction on the typing derivation for 7.

Caset =c 1> We have that relevant (¥; @+ ¢ : ¢') =relevant (¥ - ® wf), and relevant (¥; ®' Fc-6:1-06) =
relevant (¥ - @' wf). We need to show that relevant (‘¥ - @ wf) C relevant (¥ - @& wf) orelevant (¥; @' - o : ®).
We have that relevant (‘¥ - @' wf) C relevant (¥; @' I~ 6 : @), so the join in the above equality is well-defined;
from the properties of join it is evident that it is enough to show relevant (¥ - ® wf) C relevant (¥; &'+ 6 : ).
This is trivially proved by part 3(b).

Caset =s > Similarly.

Caser = f; > We have that relevant(¥; @' fj-6:1'-6) = relevant (¥; &'+ c.i : ¢’ - ). By inversion for o,
we have that relevant (¥; @'+ ¢.i: ®.i-6) C relevant (¥; @' ¢ : ®@). Thus the desired directly follows.

Caser =TII(1).to > By induction hypothesis for [#,] and 6 = G, fie|, We get that:

relevant (¥; @', -6+ 1] - (0, fig)) : ") Crelevant(¥; @', 1 -6+ [1p] : s”)orelevant (¥; &', 11 -6 F (0, fio)) : (P, 11)).
Also we have that relevant (\¥; @'+ o : @) C relevant (¥; &', 1, -6+ 6 : ®). Using the known properties of
freshening and substitutions, we know that relevant (W; @' ¢ -6 : s”) =relevant (¥; ',1; -6 F [12] - (O, fio|) : 5”).

thus this is the desired.

Case r = A(t1).t; > Similar to the above.

Caser =11 t, > By induction hypothesis we get that:

relevant (\P; @' 1, -6:11(r-0).(¢' - 6)) C relevant (¥; @+ 1, : TI(¢).t") orelevant (¥; @'+ o : ®), and that
relevant(W; ®' F1,-6:1-6) C relevant (¥; ® 1, : 1) o relevant (¥; &'+ 6 : ®). Furthermore, we have that
relevant(\W; ®' 1 -65-0: [f'-6]-(idy, 1,-0))

= relevant(¥; @' +1,-6:I1(t-6).(t' - ©)) o relevant (¥; ' -1,-6 : 7). The desired follows trivially, using
the properties of join.

Caset = X;/6’ 1> Trivial, using part 4(b).
Case (rest) > Using similar techniques as above.

Part 4(b) By induction and use of part 4(a).

Lemma D.16 (Relevancy soundness) 1. If W+ T : K and relevant(W+ T : K) =¥ then WH T : K.
2. If W+ ® wfand relevant(W + ® wf) = ¥ then P - & wf

3. IfW, @+ 11 and relevant(W; @1 :1') =W then W; ®F1: 1.

4. If W, @+ o : ¥ and relevant(W; @+ 6: ) =¥ then P; P+ o : P

Part 1 By induction on the derivation of W - T : K.
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Case T = [®]r > By part 3 we have that if relevant (¥; ® 1 :¢') = P, then ¥; & I : 1. From this we also
get that ¥; @+ ' : 5, and thus it is trivial to construct a derivation of ¥ + [®]¢ : [®]¢’.

Case T = [®]®' > From part 2 we get that if relevant (‘¥ - ®, @' wf) = W, then ¥+ ®, &' wf, thus the desired
follows trivially.

Part 2 By induction on the derivation of ¥ - ® wf.
Case @ = o > Trivially we have that unspecy - @ wf.

Case ® = P, r > We have that if relevant(W; ® 1 :5) = @, then ‘i’; @ -7 : s by part 3, and furthermore using

the implicit requirement that ® is well-formed, we also get that W + @ wf. Thus using the appropriate typing
rule we get ¥ + (P, ) wf.

Case ® =®, X; > By induction we get that if relevant(¥ + ® wf) = ‘/I\’, then ¥ - & wi, and thus also
Yo (P@i) + @ wf. Furthermore, (‘W o (W¥@i)).i = W.i. Thus using the appropriate well-formedness rule for
® we get that ¥ + (D, X;) wf.

Part 3 By induction on the derivation of ¥; ® ¢ : ¢

Caser =c > Trivially we have that l/I\’; ® ¢t for any ‘/I\‘, ® such that ¥ - @ wf, which holds for the
corresponding W based on part 2.

Casetr =s > Similarly as above.
Caser = fi > Again, as above.

Case r =TII(#;).to > Simple by induction hypothesis for [, ], and also from the fact that relevant (¥; ® ¢, :s) C
relevant (‘P F (P, 1) wf) C relevant (\¥; @, t; - [1n] : 5').

Caser=\(t;).t, > By induction hypothesis for [r,], if relevant(¥; ®, 1 - [1,]:5') = ¥, we get that
¥, ®, 1 F [12] : s'. Thus we also have that W, d 1 : 5, and also that either ¢/ = Type’ (which is an impossible
case), or ¥; @, 1, ¢ : s”. By inversion of typing for ¥; @ - I1(1; ). || : s’ we get that in fact s = ', and thus
it is easy to derive ¥; ®, 1, ¢ : s and ¥; ® FI1(1;). || : §'. From these we get the desired derivation for
U, dFMey).1p: T1(n). | 7]

Caset =1, t, > Trivial by induction hypothesis for #; and .

Caser = (t; =1;) > Again, trivial by induction hypothesis for #; and #,, and also from the fact that @1 D1t
implies ‘T’l; D1 : Type.

Caset = X;/c > From the first part (relevancy of 7 under the prefix context), we get that - ¥ wf. Furthermore,
using part 4 we get that P; ® - 6 : @'. Last, it is trivial to derive ¥; ® - X; /0 : ¢’ - ¢ using the same typing rule,

since W.i = ¥.i.

Part 4 By induction on the derivation of ¥; ® o : @',
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Case c = e > Trivial.
Case 6 =0, ¢t > Trivial by induction hypothesis and use of part 3.
Case 6 =0, id(X;) > By induction hypothesis get ¥, &+ ¢ : . Furthermore, from W - & wf and the fact

that @', X; C ®, we have by repeated typing inversions that W@i C . Thus P.i = P.i, and we can construct a
derivation for ¥; ® I (o, id(X;)) : (¥, X;).

Definition D.17 Applying an extension substitution to a partial context is defined as follows, assuming that the
partial context does not contain extension variables bigger than Xy 1.

Y. oy

® - Oy = e
(?7 K) Oy = ‘f'G\Pv K- (Gl}la X|‘P|7 Ty X|\P‘+‘\/}\l‘)
(\P, 7)-Gqf = ‘P‘G\y, ?

Lemma D.18 (Relevancy and extension substitution) /. If Aunspeclp,@u C relevant(¥, ¥, FT:K), ¥ +
oy : ¥, and 6y, = oy, Xjy|, -, Xjw|4|w,|, then unspecy:, 'V, - oy C relevant(V', ¥, -ow - T -6 : K - Oy).

2. Ifunspec\y,‘f’u C relevant(\¥, ¥, - @ wf), ¥'I- oy : ¥, and 64 = 6w, Xjw|, -+, Xjw|1|w,|, then unspecqu,‘i’u-
oy C relevant(V', ¥, - oy - ®- oy, wf).

3 If unspec\y,‘i’u C relevant(¥, ¥,; ®Ft:t'), ¥ - oy : ¥, and oy = ow, Xjw|, -+, Xjw|4|w,, then
unspecy:, ¥, - oy C relevant(V', ¥, -6y; -6y 1.0 :1'-of).

4. If unspec\y,‘i’u C relevant(¥, ¥,; ®Fo: @), ¥' I oy : ¥, and oy = oy, Xjw|, ---, Xjy|4w,|, then
unspecy:, ¥, - ow C relevant(V', ¥, -6y; -6 - 6-0f : D' - o).

Part 1 By induction on the typing derivation of 7', and use of parts 2 and 3.
Part 2 By induction on the well-formedness derivation of &.

Case ® =e > Trivial.

Case ® =@’ ¢+ > Using part 3 we get the desired result.

Case =9’ X; >

We have that unspecy, ¥, C relevant (¥, W, - @ wf)o (¥, W,) @i).

We split cases based on whether i < |¥| or not.

In the first case:
We trivially have unspecy, W, C relevant (¥, ¥, F @' wf), thus directly by use of the induction
hypothesis and the same rule for relevancy we get the desired.
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In the second case:
Assume without loss of generality ¥/, such that unspecy, ¥/, C relevant (¥, W, - @ wf), and
(unspecy, P,) = (unspecy, ¥') o (¥, W,)@i).
Then by induction hypothesis get that unspecys, ¥/, - 6y C relevant (¥, ¥, - oy - @' - oy wi).
Now we have that (@l, X,') . G(P = G(P, Xi,‘\y|+|1}u‘.
Thus relevant (¥, ¥, - 6w b (', X;) - 0 wf) = relevant (¥, W, - 6y b (D' - 0, Xi_ w1 jw) W) =
relevant (¥, W, -6y - @' - 64 wi) o (¥, ¥, - 0w) @i — |¥| + [¥')).
Thus we have that (unspecl{u, Y . oy) o (¥, W, op)@i—|¥|+|¥| C
relevant (¥, ¥, - oy - (@', X;) - 6 wf).
But (unspecy, ¥, - 6y) o ((¥', ¥y - o) ) @i — ||+ [¥']) = unspecy, ¥, oy.
This is because (unspecy, ¥,) = (unspecy, ‘P’) (¥, ¥,)@i), so the i-th element is the only one
where unspec\y,‘l’ might differ from unspecxp,‘Pu, this will be the i — [¥| + [¥’|-th element after
oy is applied; and that element is definitely equal after the join.

Part 3 By induction on the typing derivation for 7.
Caser =c,s, or vi > Trivial using part 2.

Case r =TII(#;).to > By induction hypothesis for [, ].
Case r = A(f1).t; > By induction hypothesis for [z, ].

Caset =11t > Assume ‘P1 and ‘Pg such that ¥ = ¥ 10 ‘P2 Then use induction hypothesis for ¢; and #,. Last

combine the results using join to get the desired, noticing that both ‘P1 - oy and ‘Pz Oy are C . Oy (S0 join is
defined between them), and also that (‘Pl o \Pz) Oy = ‘Pl -0y O ‘Pz o Ow.

Caset =X;/c >

We split cases based on whether i < || or not. In case it is, the proof is trivial using part 4. We thus focus on

the case where i > |P|.

We have that unspecy, ¥ C relevant (¥, %,) ;- [@']1 : [®']s) orelevant (¥, ¥,; @+ 6: D)o (¥, ¥,)@i).
[W)+|W,|—i times

~ —N
Assume ‘Pllt,‘P’ ¥2 such that (P! =, 2.7 ), _unspecy, ¥ C relevant (¥, ¥,) i [®]7 : [@]s),
unspecy, 2 C relevant (¥, W,; ®+ o CI)’) and last that ¥ = P! o P20 (¥, ¥, @i)).

By induction hypothesis for [®|7 we get that:

unspecy, ¥, - 6y C relevant (¥, W, - o) |- [@ - oylt -0yt [P -oyls- o).

By induction hypothesis for ¢ we get that:

unspecy:, W2 - oy C relevant (¥, W, - Gy; ®- cyFo-0y:d o)

We combine the above to get the desired, using the properties of join at @ as we did earlier.

Case (rest) > Similar to the above cases.

Part 4 Similar as above.

D.4 Unification

Here, we are matching a term with some unification variables against a closed term. Therefore we will use
typing judgements like W -, T : K instead of W', ¥, k-, T : K, as we did above. The single ¥ that we use
actually corresponds to ¥,,; the normal context ¥’ is empty.
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First, we need to define the notion of partial substitutions, corresponding to substitutions for partial contexts
as defined above.

Definition D.19 (Partial substitutions) The syntax for partial substitutions follows.
Oy :=e |Gy, T |Gy, ?

Definition D.20 Joining two partial substitutions is defined below.

—~
Oy O Oy

@)

,T)o (6w, T) =

(Gy (6gooy ), T
(6w, Doy, T) = (cwooyw), T
(6w, T)o(6y,?) = (cwoow), T
—~ — — —/

(6‘1’7 ?)O (G‘I’ ; ?) = (G\POG‘P )7 ?

Definition D.21 Comparing two partial substitutions is defined below.

oy C oy
ol o
(6w, T)C (69, T) « oyLCoy
(6w, )C (oW, T) <« owCoy
(6w, )C (69, ?) <« owLCoy

Definition D.22 The fully unspecified substitution for a specific partial context is defined as:

unspecy = Gy

unspec, = ?
unspecg , = UNSpecy, ?
unspecgy , = unspecg, ?

Definition D.23 Applying a partial extension substitution to a term, a context, or a substitution is entirely
identical to normal substitution. It fails when a metavariable that is left unspecified in the extension substitution
gets used, something that already happens from the existing definition B.77.

Definition D.24 Replacing an unspecified element of a partial substitution with another works as follows.

ogli— T) =Gy’

(6w, N[i—T] = oy, T wheni=|Gy|
(6w, T][ir+T] = oywli+>T], T wheni < |Gy|
(6w, N[i—T] = oylir>T], ?wheni< |Gy
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Definition D.25 Limiting a partial substitution to a specific partial context works as follows; we assume
|G| = PI.

ovlg
()l = e
(6w, T)lg, = Owlg,?
(Gll’; T)|(I),K = G‘P’\/{\n T
(0w, Dlg, = Owlg ?

Definition D.26 Typing for partial substitutions is defined below.

ol—@:‘/{\’

oFE\\y:‘i‘ o-T:K Oy ob,&}:@
ofe:e oty (69, T): (¥, K) oy (6, 7): (P, ?)

Lemma D.27 [fel- Gy, : ¥, and e - Cys: Yy, with ¥, 0P, and Gy oGy, defined, then o - Gy oGy, : ¥, 09,
By induction on the derivation of Gy 0 Gy, = O .

Case eoe > Trivial, since ‘i‘l = ‘/I\’z = o by typing inversion.

Case (A(/S‘\PllaAT) o (Gyy, T) > By typing inversion get ¥| = ‘i”l, K with T : K, and ¥, = A’z, K with T : K.

Thus ¥, oW, = q”l o ‘f”z, K, and by induction hypothesis for 6@’1 , 6\\;/2 and typing it is easy to prove the desired.

(Gw}, 7)o (G, T)
B
‘f"l o ‘ff’z, K, and by induction hypothesis for 6\\;/1 , 61\11/2 and typing it is easy to prove the desired.

D> y typing inversion get ‘/I\H = ‘f"l, ?, and ‘i’z = ‘i”z, K with T : K. Thus ‘i’] o‘f‘z =

(6w, T)o (G, ?)
S

Case > imilar to the above.

(691, 7)o (Gwy, ?)

A

Case

> gain by induction hypothesis and the fact that ‘i‘l = 1»7and ‘f‘z = ‘f”z, ? by typing

inversion.
Lemma D.28 Ife - Gy : P ool P wfand‘i” C P, then 6@]@, C oy and e - &\y\@, P

Trivial by induction on the derivation of G|

Now we are ready to proceed to a proof about the fact that either a unique unification partial substitution
exists for patterns and terms that are typed under the restrictive typing, or that no such substitution exists. The
constructive content of this proof will be our unification procedure.
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To prove the following theorem we assume that if ¥; @+, 7 : ¢/, with ¢’ # Type/, the derivation ¥; @+, 1’ : s
for a suitable s is a sub-derivation of the derivation ¥; ® -, ¢ : '. The way we have written our rules this
is actually not true, but an adaptation where the ' : s derivation becomes part of the 7 : ¢’ derivation is
possible, thanks to the theorem B.68.

Theorem D.29 (Decidability and determinism of unification) 7. If' ¥+, ® wf, o -, @' wf, relevant(¥ -, ® wf) =
W, then there either exists a unique substitution Oy such that ¢ - 6y : ¥ and ® - 69 = &/, or no such substi-
tution exists.

2. IfY; Dbpt:tr, o & b, 1 1 1) and relevant(¥; ® 1 : 1) = W, then:
assuming that W; ® &, 17 : s, ; ® &, 17 15, relevant(¥V; ®tptr 2 s) = W (or, if tr = Typé€, that ¥ Fp @ wf,
o b, @ wf, relevant(¥ -, ® wf) = ‘i’) and there exists a unique substitution Gy such that e - Gy : v,
® -6y = andtr -6y =17,
then there either exists a unique substitution (/5\\{'/ such that e - (/5\\;:/ % , D (/SE:/ =& 1 -(/Sx\yl =t} and
t- 6\\;/ =1, or no such substitution exists.

3V, T K, o, T': K and relevant(¥V; ® + T : K) =P, then either there exists a unique substitution Gy
such that e - oy : W and T - oy = T', or no such substitution exists.

Part 2 By induction on the typing derivation for 7.

c:tek
— D
Y, o ,c:tr
We have -Gy = ¢- Gy = c. So for any substitution to satisfy the desired properties we need to have thatt’ = ¢
also; if this isn’t so, no Gy’ possibly exists. If we have that 7 = t' = ¢, then the desired is proved directly by
assumption, considering that relevant(¥; ® -, ¢ : 1) = relevant (¥; ® -, 17 : 5) = relevant (¥ -, ® wf) (since
tr comes from the definitions context and can therefore not contain extension variables).

Case

SdI=1¢
_— D>
V. ®F, fi:tr
Similarly as above. First, we need t' = fy/, otherwise no suitable Gy exists. From assumption we have a unique
Gy for relevant(¥; @, t7 :5). If I- Gy = I, then Gy has all the desired properties for G, considering the
fact that relevant(¥; ® -, fi: t7) =relevant (¥ I, ® wf) and relevant (¥; ® -, 17 : s) = relevant (¥ -, ® wf)
(since tr = ®.i). It is also unique, because an alternate 6;/ would violate the assumed uniqueness of oy. If
I-Gy # Gy , no suitable substitution exists, because of the same reason.

Case

(s,s) e A
Y, Ok, s s
Entirely similar to the case for c.

Case

W, Db, ¥ @, 11 5[] 05 (s, s")eR
LP; (4] l_p H(l‘l).l‘g : SN

First, we have either that #/ = I1(¢}).t5, or no suitable Gy’ exists. Thus by inversion for ¢’ we get:

o Dk, t s, 0P 1 F, [tﬂ‘q),‘ 5l (84, 5%, 8") € R.

Now, we need s = s, otherwise no suitable (/5\\{1/ possibly exists. To see why this is so, assume that a (/5\\;:/ satis-

fying the necessary conditions exists, and s # s,; then we have that 7, oy = 11, which means that their types

should also match, a contradiction.

We use the induction hypothesis for #; and ¢{. We are allowed to do so because relevant(¥; @+, s" : s") =

relevant (¥; @, s : s”"), and the other properties for Gy also hold trivially.

Case

>
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From that we either get a 6y such that: e - 6y’ : ¥, where P = relevant (W; @F,t:5) and 1 - oy = =1,
® .6y = @' Since a partial substitution unifying ¢ with ¢/ will also include a substitution that only has to
do with ¥, we see that if no Oy’ is returned by the induction hypothesis, no suitable substitution for ¢ and ¢’
actually exists.

We can now use the induction hypothesis for #, and Gy, since relevant (W; @11 b, s"") =relevant(¥; @+, 1 :

and the other requirements trivially hold. Especially for s’ and s’, being equal, this is trivial since both need to
be equal to s” (because of the form of our rule set R).

From that we either get a 6" such that, e - Gg" : 9", [1,] | oy =[1] @) P oy =®andt -Gy’ =1}, or
that such C/Fl\y” does not exist. In the second case we proceed as above, so we focus in the first case.

By use of properties of freshening (like injectivity) we are led to the fact that (I1(r;).12) - Gy = I1(r}).(t5),
so the returned 6y has the desired properties, if we consider the fact that relevant (¥; ® &, I1(t;) .t : s
relevant (‘P; D11+ [tﬂlq)‘ s

¥ Ph,ts WD by (R Y @, (). |13 1), 1 S
W, @b, A(1).02 : T(1y). [ 13] @, -

We have that either £/ = A(t]).t}, or no suitable Gy’ exists. Thus by typing inversion for ¢’ we get:

o Dbyt is, 0 @t by (1] g 13, 0 @, TI(H). [13] 1, 0 5%

By assumption we have that there exists a unique Gy such that relevant (‘P; @, I(1). [13]9,. : s) =y,

oGy W, @5y =, (II(1). |13)) - 6% = I1(¢)). |4, if relevant (‘P; @k, T(1). |13 @7,‘) — ¥, From that
we also get that 5" = .

From the fact that (I1(z1). [t3]) - 6 = I1(#}). | £} |, we get first of all that #; - 6p = ], and also that 13 - Gy = £}.

Furthermore, We have that relevant (W; ® -, I1(#1). |#3] : s") = relevant (¥; ®, 11 Fp 131 57).

From that we understand that Gy is a sultable substitution to use for the induction hypothesm for [tﬂ

Thus from induction hypothesm we either get a unique Gy’ with the propertles oGy VW, (1] o9 = (1],

Case >

(D@, 11)- oy =@ tl, f3-Cyp = t3, if relevant (‘P D, 1ty [12] @ :t3) = ‘I’, or that no such substitution exists.

We focus on the first case; in the second case no unifying substitution for # and ¢’ exists, otherwise the lack of
existence of a suitable (/SE:/ would lead to a contradiction.

This substitution Gy has the desired properties with respect to unification of ¢ against ¢ (again using the
properties of freshening, like injectivity), and it is unique, because the existence of an alternate substitution
with the same properties would violate the uniqueness assumption of the substitution returned by induction
hypothesis.

Y dk, (1)1 ¥, db,nt,

W @bptitr: (1] (ido,12)
Again we have that either ¢’ = 7] ¢}, or no suitable substitution possibly exists. Thus by inversion of typing for '
we get:
o: Dby ty ()., 0 Py 1y 114, 17 = [13] g (dey, 13).
Furthermore we have that ¥; @+, T1(t,).1;, : s and e; &+, TI(z)).t; : s’ for suitable s, s’. We need s = s, other-
wise no suitable Gy’ exists (because if #; and 11 were unifiable by substitution, their IT-types would match, and
also their sorts, which is a contradiction).
We can use the induction hypothesis for I1(z,).t;, and I1(z},).,, with the partlal substitution Gy limited only to
those variables relevant in W I, @ wf. In that case all of the requirements for Gy hold (the uniqueness condition
also holds for this substitution, using part 1 for the fact that ® and @’ only have a unique unification substi-
tution) so we get from the induction hypothesis either a 63’ for ¥ = relevant (W; @+, ()1 : s) such that
® -6y = @ and (11(z,).1) - 6w = I1(t}).1;, or that no such Gy’ exists. In the second case, again we can show

Case
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that no suitable substitution for ¢ and ¢’ exists; so we focus in the first case.

We can now use the induction hypothesis for ¢, using this Gy . From that, we get that either a Gy, exists for
‘i‘l = relevant(¥; ®+, t] I1(t,).t,) such that t; - Gy = =1 etc., or that no such Gy, exists, in which case we
argue that no global oy exists for unifying 7 and ¢’ (because we could limit it to the ‘Pl variables and yield a
contradiction).

We now form 6@” which is the limitation of (/TE/ to the context ¥ = relevant (W; PE,t,: s, ). For that, we
have that e I, oy’ P DGy v =@ andt,-0¢ =1, Alsoitisthe unique substitution with those properties,
otherwise the induction hypothe51s for t, would be violated.

Using G¢" we can allude to the induction hypothesis for #,, which either yields a substitution Gy, for
@2 = relevant (¥; ® - ph2: t4), such that # - Oy, = té, etc., or that no such substitution exists, which we prove
implies no global unifying substitution exists.

Having now the Gy; and Gy, specified above, we consider the substitution Gy, = Gy o Gy,. This substi-
tution, if it exists, has the desired properties: we have that ¥, = relevant (‘I’ P, it [ty (qu;, h)) =
relevant (W; @+, 1y : T1(2,) 1) o relevant (¥; @+, 1, :1,), and thus e - oy, : ‘P Also (t 1) - Ow, = 1] 15,
tr-Op, =t} (because th - Gw, = 1}, etc.), and P - @, = @', It is also unique: if another substitution had the
same properties, we could limit it to either the relevant variables for ¢; or #, and get a contradiction. Thus this is
the desired substitution.

If Gy, does not exist, then no suitable substitution for umfymg t and ¢/ _exists. This is again because we could
limit any potential such substitution to two parts, Glpl and G\yz (for ‘P1 and ‘P2 respectively), violating the
uniqueness of the substitutions yielded by the induction hypothesis.

Y, Dk, 1, Y, Pk, Y, ®F,1,: Type

Y, o, tl—tz Prop >
Similarly as above. First assume that t' = (¢t] =¢,), with#{ : ¢/, t} : #; and ¢}, : Type. Then, by induction hypothesis
get a unifying substitution 6@/ forz, and ,,. Use that 6@’ in order to allude to the induction hypothesis for #; and
1> independently, yielding substitutions Gy, and Gy,. Last, claim that the globally required substitution must
actually be equal to Gy 0 Gy,.

Case

W).i=T T=[®Jir ¥, dF,0:d, &, CP oc=ide,
v, q)t_le'/GitT'G
We trivially have t7 - 6 = 7. We split cases depending on whether Gy.i =? or not. If it is unspecified:
We split cases further depending on whether ¢’ uses any variables higher than |®, - Gy| — 1 or not.
That is, if 7/ </ |D. (/S\\{J| or not. In the case where this doesn’t hold, it is obvious that there is no
possible 6y such that (Xi/0) .69 =1', since 63’ must include Gy, and the term (Xi/0) .69 can
therefore not include variables outside the prefix @, - Gy of ® - Gy.
In the case where ¢/ </ |®, - Gy|, we consider the substitution Gy = Gg[i — ]. In that
case we obviously have & - 6y = @, t7r- 63 = tr, and also t -6y = t'. Also, ¥ =
relevant(¥; @+, X;/c : 17 - 6) = (relevant (W|;; ., 17 :5),?,---,?)orelevant(¥; &+, 0:P,)o
(P@i).
We need to show that e I 6\\1/ S First, we have that relevant(¥; ®+,c:P*) =
relevant(W -, ® wf) since &* C &. Second, we have that relevant(¥; ®F,tr:5) =
(relevant (W|;; @, ptr :s),?2,---,?) orelevant (¥ I, @ wf). Thus we have that ¥ =Yo (P@i). It
is now trivial to see that indeed e - (/Sx\y/ 3
If Gy.i = t,, then we split cases on whether ¢, = ¢’ or not. If it is, then obviously Gy is the desired unifying
substitution for which all the desired properties hold. If it is not, then no substitution with the desired properties
possibly exists, because it would violate the uniqueness assumption for Gy.

Case

146



Case (rest) > Similar techniques as above.

Part 1 By induction on the well-formedness derivation for ®.

Case — >
Y, ewf

Trivially, we either have @' = e, in which case unspecy is the unique substitution with the desired properties,
or no substitution possibly exists.

Y, dwf Y, db,1:s
Case >
Y, (P, 1) wf

We either have that ® = &', ¢’ or no substitution possibly exists. By induction hypothesis get Gy such that ® -
oy =P and e I Gy : ¥ with ¥ = relevant (W +, @ wf). Now we use part 2 to either get a 6}/ which is obviously
the substitution that we want, since (®, £)-Gy = @', ¢’ and relevant (¥ -, (®, ¢) wf) = relevant (¥; ® F, 7 : 5);
or we get the fact that no such substitution possibly exists. In that case, we again conclude that no substitution
for the current case exists either, otherwise it would violate the induction hypothesis.

o, dwf (¥).i = [®]ctx

Y, ®, X; wf
We either have @ = ®, ®”, or no substitution possibly exists (since ® does not depend on unification variables,
so we always have ® - Gy = ®). We now consider the substitution Gy = unspecyl[i — [®]P"]. We obviously
have that (@, X;) - Gy = ®, @, and also that e - Gy : ¥ with ¥ = W@i = relevant (¥ -, ®, X; wf). Thus this
substitution has the desired properties.

Case

Part 3 By induction on the typing for 7.

Y, dF, 117 ¥, dttr:s

Y, @]t [@]tr
By inversion of typing for T’ we have: T’ = [®]t', &; @&, 1" 117, 0; D F, 17 1 5.
We obviously have ¥ = relevant (¥; @+, 17 1 5) = unspecy, and the substitution Gy = unspecy is the unique
substitution such that e - Gy : @, ® -6y = ® and 17 - 6y = t7. We can thus use part 2 for attempting unification
between ¢ and ¢/, yielding a 63’ such that e - 63’ : P with ¥’ = relevant (¥; ®tp,r:tr) and £ oy =t. We
have that relevant (¥; @+, ¢ :t7) = relevant (¥ -, T : K), thus ¥’ = W by assumption. From that we realize
that Gy’ is a fully-specified substitution since @ - Gy : W, and thus this is the substitution with the desired
properties.
If unification between 7 and ¢ fails, it is trivial to see that no substitution with the desired substitution exists,
otherwise it would lead directly to a contradiction.

Case

Y, ®, &' wf
Y, [0 [@ox
By inversion of typing for 7" we have: T’ = [®|®”, o |-, &, ®” wf, o -, & wf. From part | we get a Gy unifying
®, & and ®, ®”, or the fact that no such Gy exists. In the first case, as above, it is easy to see that this is the
fully-specified substitution that we desire. In the second case, no suitable substitution exists, otherwise we are
led directly to a contradiction.

Case

The above proof is constructive. Its computational content is actually a unification algorithm for our pat-
terns. We illustrate the algorithm below by giving its unification rules; notice that it follows the inductive
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structure of the proof (and makes the same assumption about types-of-types being subderivations). If a
derivation according to the following rules is not possible, the algorithm returns failure.

Definition D.30 (Unification algorithm) We give the rules for the unification algorithm below.

(Pr,T:K)~ (o, T':K)>Cy

(P; @bpt:tr) ~ (o PH, 1"t 1) <unspecy > Gy (P, @, @ wi) ~ (e, D, D" wf) >Gy

(P, [@1: [®)tr) ~ (o b [@]1 : [@]17) >Gy (¥, [P : [P]ctx) ~ (o, [P]D” : [P]ctx) > Gy

(P+, D wf) ~ (o - @ wf)>Gy

(P F, @ wf) ~ (e - @ wf) >unspecy

(P, @wf)~ (o, @ wi)>ow (W Prpris)~ (o @ 1 :5)aGy>00
(Y, (@, 1) wE) ~ (o (@', 1) w) > Gy

(P, @, X; w) ~ (o - @, @ wf) >unspecy[i — P]

(W; @Fp1:17) ~ (0 @ -1 1)) <Gp> Gy

(¥; Dbpc:t) ~ (o; CI>’|—c:t’)<16\¥zl>6\\y’ (‘P; dDI—ps:s’) ~ (o; @'l—s:s’)q&}ng\y/

I.og=T
(W; Dt fiit) ~ (o; @lf—fy:l‘/)dg\\ybg\\y

(W; @yt :s)~ (o @ 1] :5)90w>Gy
(‘P; D, 11 by [12] g :s’) ~ (.; @', 11ty (1] :s’) 46y >Oy

¥, Dt cs ¥ @, 1 b (tth)‘:s’ o, D1 s o, & 1 F {tﬂ@,‘:s’
(s’s/’s//) eR (S,S/,SN) eR ~
~ 46y > G
W @k, ()10 5" o, & FTII(1)).ty: 5" e

(‘P; D, 11 1 [12] g :t’) ~ (o; @, 1y (] @ :t”) 46y >Oy
. d /. I N ! .
¥, db,r s ¥, CI),/Z1 Fp [IZIMCI’I o o, &'k ./s o/, (o>} ,Htl - {tﬂ \fp’l it
¥, @+, II(1). UJ\<1>|,, is o, &' H, II(1}). |t J\<I>/|w is
W Db, A1) T1(1y). | 7] o, & FA(r)).t5 : TN(2}). [ £

"

— —/
<0y > Oy

‘(b|~ |(I)"
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(l}l; P+ H(ta) Ip: S/) (°' P, H(E;)-té : S/) <]6;’’relevalnt(‘{’}—,,(D wf) D®/
(‘P D, 1y (ty).1) ~ (o ;lel—pti:H(t;).t;’,)qc?\\ylb&\pl
(IP’ P }_ B ta) ~ ( ’ CI)/ |_p té : t:;) <]6‘\I‘I|relevant(‘l’; Dl t4:5) 96‘\112

Y, dF,1,:5 ' <1>’|— t’:
W Db, (1) .00 8 o, O, II(t),).1: s
(a) 1 W, Db, 1, ! ()1 O
¥, @k, 1 I(t,) .1 o, &+, 11 TI(2)).1, -
. ~ - <Oy > Oy 0Oy,
W @b, 10 1] g (ide,12) . &', 11ty [t,’y]‘q),‘-(|dq>/,t§)

(W; @, 1:Type) ~ (o @', 1" : Type) <Gw > Gy’

(W Phptiit)~ (s @ Fpt] 1) 90w bOw; (¥ Plpnit) ~ (0@ byt it') 96y >Gwy
W, P, ot W, @k, o O, 11 oD, 01
¥, &k, 1 Type o dF, ¢ : Type e oG
v, cI)I—p ty =1t : Prop o; CI)}—p ti :té : Prop oI

Cyp.i=? Wi=[®y 1< |D* oyl
(P; @+, X;/G:t7-0) ~ (o, D' 1 :17) 96w > Gyli — [P*] ]

Op.i=[®]t t=¢
(¥; @+, X;/o:tr) ~ (o @' 1 :17) <Gy >Cy

Lemma D.31 The above rules are algorithmic.

Proved by the fact that they obey structural induction on the typing derivations, and are deterministic; non-
covered cases signify the unification failure result.

By mimicking the unification proof above, we could show independently that the above algorithm is sound
— that is, that the Gy’ it returns if it is successful is actually a substitution that makes ¢ and ¢’ unify (as well
as ® and @', along with 77 and #}) and is of the right type, provided that the assumptions about the input
substitution Gy do hold. Furthermore, we could show completeness, the fact that if the algorithm fails, no
such substitution actually exists.

D.5S Computational language

Here we will refine our results for progress and preservation from the previous section, using the above results.

Definition D.32 We refine the typing rule for pattern matching from definition C.4 as shown below.

WET:K WK T[Ty, ix  PH, {‘I’M\Wf

v, [¥'] e P (7" \‘I’\,\‘I”\/:K unspec,;.y, v 1\‘*’| relevant (‘P,/[‘P’} \‘PI » [T ]\‘PM‘P’I :K)
¥, PP]M DYS Ny [eh\y\,ry'\ [y (dw, {T]M \\{”
;X5 T unify T return (.t) with (9.7 = ¢') 1 ([] g ; - (idw, T')) + unit

Lemma D.33 (Substitution) Adaptation of the substitution lemma from C.13.
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All the cases are entirely identical to the previous proof, with the exception of the pattern matching construct
which has a new typing rule. In that case, proceed similarly as before, with the use of the lemmas D.2, D.3 and
D.18 proved above.

Theorem D.34 (Preservation) Adaptation of theorem C.16 to the new rules.

All the cases are entirely identical to the previous proof, with the exception of the pattern matching construct.
In that case, we need to explicitly allude to the fact that if e -, ['¥'] wp| W, then obviously also e - [P | Wi
Similarly we have that [W'] I, [T"]( g, : K implies [¥"]o = [T"]g g : K.

Theorem D.35 (Progress) Adaptation of theorem E.11 to the new rules.

Again the only case that needs adaptation is the pattern matching case. In that case, we first note thatif e -7 : K
(as we have here), we also have e -, T : K. Then, we allude to the theorem 3 to split cases depending on whether
a suitable oy exists or not. In both cases, one step rule is applicable — if a unique Gy exists, then it has the desired
properties for the first pattern matching step rule to work; if it does not, the second pattern matching step rule is
applicable.

D.6 Sketch: practical pattern matching

The unification algorithm presented above requires full typing derivations for terms, something that is unrealistic
to keep around as part of the runtime representation of terms. Here we will present an informal refinement of
the above algorithm, that works on suitably annotated terms, instead of full typing derivations. The annotations
are the minimal possible extra information needed to simulate the above algorithm.

Definition D.36 We define a notion of annotated terms, for which we reuse the t syntactic class; it will be
apparent from the context whether we mean a normal or an annotated term.

tu=cls|filbi| M)t | Us(ty)ta | (t1:8) 02|11 = 12 | Xi/O

Lemma D.37 1. If t is an unannotated term with o, ¥,; ® -, t : t' then there exists a derivation for ¥,; ® -,
t .t where all terms are annotated terms.

2. The inverse is also true.
These are trivial to prove by structural induction on the typing derivations.

Definition D.38 The unification procedure is defined through the following judgement. It gets ¥ as a global
parameter, which we omit here.

(T) ~ (")

(t) ~ (') <unspecy > Gy (@, D) ~ (@, ") >0y
([@]1) ~ ([@]¢') > Oy ([®] D) ~ ([@]D")>Cw

(@) ~ (?")

(@)~ (®)>09 (1)~ () <Cwoy
(e) ~ (¢)>unspecg (®, 1) ~ (@, 1)) >09

(@, X;) ~ (P,P") = unspecy|i — [P]P']
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I.og=T
(¢) ~ (c) 20w > Gy (s) ~ (5) 90w > GO (f1) ~ (f{) <Ow>Ow
s=s (1)~ () <cerow  ([n])~([£])<ce >ou" ([]) ~ ([4]) «cw>o9’
(I(11)-12) ~ (T (#}).13) <Cw>Gw” (Mt1).2) ~ (M#}).1}) <Cw > Gy’
(1)~ () aoepoy’ (1)~ (1) 96w >Gw; ()~ (1) 9G¥ >Gw;  Gwj oGy, =Gy
() ) ~ ((t] : 1) 1)) aCw>Gy”
(1)~ (') aop>69 (1)~ (1) <09’ >Gp; (1) ~ (1) 909 >Gyy Oy oGy, =Gy
(= 0) ~ (1} =v 1)) 9Cw> Gy
op.i=? (' </|c oy oy.i="1
(Xi/o) ~ (') <Gy > Gyli — 1] (Xi/o) ~ (') <Gy > Gy

E. Simple staging support

Here we will add a light-weight staging support to the computational language. We extend the computational
language as follows.

Definition E.1 The syntax of the computational language is extended below.

e:=--- |letstaticx = einé
=T xu1

Definition E.2 Freshening and binding for computational types and terms are extended as follows.

(d?v/[.,K

[letstaticx = ein e’]%,{ = letstaticx = [e }%K in (e}M“

le] AN/].,K

|letstaticx = ein e’j%,( = letstaticx = [e jNK in LejM“

Definition E.3 Extension substitution application to computational-level types and terms.

e oy

letstaticx = eine’-op = letstaticx = e-oypine -oy
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Definition E.4 Limiting a context to the static types is defined as follows.

.’static = o
(F) X s t)|static = F‘statica x:t
(F7 X t) |static = 1—“static

(F, (O k)|static = 1—“static

Definition E.5 The typing judgements for the computational language are extended below.

¥; ¥ The:t
% [gatic et Y, % Toxethe it xtel
Y. ¥: T+ letstaticx = eine : 1 Y. X IT'kx:7t

Definition E.6 Small-step operational semantics for the language are extended below.

e::=A(K).e|eT |pack T return (.t) with e | unpack e (.)x.(e')
| () |error | Ax:t.e|ee | x| (e, €) | proj; e | inj; e | case(e, x.¢', x.¢”) | fold e | unfold e | ref e
le:=¢|le|l|Aa:ke|eT|fixx:T.e
| unify T return (.t) with (P.7’ — ¢€’) | letstaticx = ein ¢’
vi=A(K).eq | pack T return (.t) withv | () | Ax:T.eq | (v, V') |inj;v|fold v |1 | Ao : k.eq
eq:=NA(K).eq | e4 T | pack T return (.) with e; | unpack ey (.)x.(¢};)
| () | error | Ax:T.eq | eqa €, | x| (eq, €) | proj; eq | inj; eq | case(eq, x.€);, x.€}) | fold e4 | unfold ey
|refeq |eq:=¢ | leq |l | Aot k.eq|eqT|fixx: T.eq
| unify T return (.t) with (¥.T" +— ¢/,)
8 ::=letstaticx = ein¢’ | letstaticx = Sine' | A(K).8 | Ax: 1.8 | unpack ey (.)x.(8)
| case(eq, x.8, x.e2) | case(ey, x.e4, x.8) | Ao : k.8 | fix x : ©.8 | unify T return (.t) with (¥.7" — 8§)
Es|S
& :::’ 8S[T]| pack T return (.t) with & | unpack & (.)x.(¢") | Es €' | eq Es | (Es, €) | (eq, E) | proj; Es
|inj; &5 | case(&y, x.eq,x.ep) | fold E |unfold Es | ref & | Es:=¢' | eq:=E; | 1&5 | Es T
Eu=e|ET |packT return (.t) with € | unpack € (.)x.(eq) | Eeq | vE | (E, eq) | (v, E) | proj; € | inj; €
| case(E, x.¢/, x.el)) |fold € |unfold € |ref & | E:=¢y |v:=E|1E|ET
uz=e|u l—v

(1, e) — (1, ¢ )lerror) |

(:uved)—>(:u/ae£1) (y,ed)—>error
(1, 8lea) — (', Sleg])  (u, Slea] ) —y error

(u, Slletstaticx = vine] ) — (u, Sle[v/x]])

(u, letstaticx = vine) — (u, e[v/x])

Most lemmas are trivial to adapt. We adapt the substitution lemma for computational terms below.

Lemma E.7 (Substitution) /. If ¥, ¥; T, o : K, 't kand ¥; T+ 7 : K then ¥, ¥, T, TI'[t'/o/]
Tt /] k.
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2209,V 2T, 0 K, The:tand W; THT ik then ¥, WV, X, T, I'[Y/d/] e[t /o] : [t /o).
3IUY, W ET, X v, T keg:tand Vs 25Tl : v/ then W, W' E, T, T Feglel, /X o .

4. IfV; T, x5, 'Fe:Tande; X, o v:tthen¥; L, T, T Felv/x]: 7.

519, T, x:1, ' Fe:Tande; X; e-v:Tthen¥; L, T, I -e[v/x] : 7.

Easy proof by structural induction on the typing derivation for e. We prove the interesting cases below:
xtel

— b
V. X T'kFx:7t
We have that eg[e/,/x] = €/, and ¥; X; T'I- ¢/, : T, which is the desired.

Part 3. Case

o % Dgatic e T Y, o xthe v
>

Y; ¥: T+ letstaticx = eine’ : v
Impossible case, because the theorem only has to do with e, cases.

Case

Part 4. Most cases are trivial. The only interesting case follows.

o, % Dlstatic; *: 7T, [ |static Fe: T Y. o oxt I Xt/ et
Case ; — —— >
Y, X T, xit, I Fletstaticx” = eine @7
We use part 5 for e to get that e; X; I'|gatic, I |static F €[v/x] : T.
By induction hypothesis for ¢’ we get ¥; £; I', I X' (st Fe'[v/x] : 7.
Thus using the same typing rule we get the desired result.

Part 5. Trivial by structural induction.

Lemma E.8 (Types of decompositions) /. If ¥; X; 't §[e| : T with Ul = o, then there exists T such that
o, X; et-¢: 7 and for all ¢ such that e; ¥; e - ¢ : T, we have that ¥; £; T+ §[¢'] : t.

2. If ¥; X, Tk Ele] : T then there exists T such that W; £; T'F e : v and for all € such that ¥, £; TH €' : v, we
have that ¥; £; T+ &[] : t.

Part 1. By structural induction on 8.

Case 8 = letstaticx = einé’ > By inversion of typing we get that e; X; [|static F € : T. We have I'|saic, thus
we get o; X; o - e : 7' Using the same typing rule we get the desired result for §[e'].

Case 8 = letstaticx = 8’ in¢” > By inductive hypothesis for 8’ we get the desired directly.

Case S = A(K).8' > We have that [8'[e,]] = 8"[[e]] with 8” = [8[e]]. By inductive hypothesis for
¥ K; X, T+ 8"[[e]] : © we get that e; X; @ - [¢] : T'. From this we directly get [¢] = ¢, and the desired
follows immediately (using the rest of the inductive hypothesis).

Case 8 = &[8] > We have that ¥; X; T'F £[8[e4]] : T. Using part 2 for & and S[ey] we get that ¥; X; T+
Sleq] : T for some 1" and also that for all ¢’ such that ¥; X; T'ke: v/, ¥; ¥; I' E[e’] : T. Then using induction
hypothesis we get a T’ such that e; X; e - ¢, : 7. For this type, we also have that e; X; e |- ¢/, : " implies
W; X; T'F 8[e))] : v, which further implies W; Z; T'F E[8[e/}]] : T.

The rest of the cases follow similar ideas.
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Part 2. By induction on the structure of ;. In each case, use inversion of typing to get the type for e, and then
use the same typing rule to get the derivation for &;[e'].

Theorem E.9 (Preservation) /. Ife; X, ete:T, u~Y% (u,e) — (U, ) then there exists ¥ such that
YCY, U ~Y ande; Y ; o€ : 1.

2. Ife; X ebeg it u~Y (u,eq)—5 (1, €, ) then there exists X' such that L C ¥, i/ ~ X' and
oY ek¢ 1.

Part 1 'We proceed by induction on the derivation of (u, e) — (i, €").

(u,ea) — (4, eq)
(1, Slea] ) — (1, Sley])
Using the lemma E.8 we get o; X; @ - ¢, : 7. Using part 2, we get that e; X; e - ¢/, : 7. Thus, using again the
same lemma we get the desired.

Case

Case (u, S|letstaticx = vine] ) — (u, Sle[v/x]] ) >
Using the lemma E.8 we get o; ¥; o |- letstatic x = vine: 7. By typing inversion we get that e; X; e v : 1",
and also that ; X; x :; T/ F e : T'. Using the substitution lemma E.7 we get the desired result.

The rest of the cases are trivial.

Part 2 Proceeds exactly as before, as e; entirely matches the definition of expressions prior to the extension.

Theorem E.10 (Unique decomposition) I. For every expression e, we have:
(a) Either e is a dynamic expression ey, in which case there is no way to write ey as S|€'] for any é'.
(b) Or there is a unique decomposition of e into 8[e4].

2. For every expression ey, we have:
(a) Either it is a value v and the decomposition v = E[e] implies € = ® and e = v.

(b) Or, there is a unique decomposition of ey into eq = Ev].
Part 1. Proceed by induction on the structure of the expression e.

Case A(K).¢' > By induction hypothesis on the structure of ¢’. If we have ¢’ = ey, then this is a dynamic
expression already. In the other cases, we get a unique decomposition of ¢’ into 8'[¢”]. The original expression
e can be uniquely decomposed using 8 = A(K).8', with e = 8[¢”]. This decomposition is unique because the
outer frame is uniquely determined; if the inner frames or the expression filling the hole could be different, we
would violate the uniqueness part of the decomposition returned by induction hypothesis.

Case ¢’ T 1> By induction hypothesis we get that either ¢’ = €/,, or there is a unique decomposition of ¢’ into
8'[€"]. In that case, e is uniquely decomposed using 8 = &[8'] with ;= T, into e = 8'[¢”] T

Case unpack x (.)¢’.(¢”) > By induction hypothesis on ¢’; if it is a dynamic expression, then by induction
hypothesis on e”; if that too is a dynamic expression, then the original expression is too. Otherwise, use
the unique decomposition of ¢’ = 8'[¢”] to get the unique decomposition e = unpack x (.)es.(8'[¢”]). If €
is not a dynamic expression, use the unique decomposition of ¢ = 8”[¢"”'] to get the unique decomposition
e =unpackx (.)8"[¢""].(e").
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Case letstaticx = ¢’ ine” > By induction hypothesis on €’
In the case that ¢’ = ¢4, then trivially we have the unique decomposition e = (letstaticx = e ine”)[ey].
In the case where ¢’ = §[e4], we have the unique decomposition e = (letstatic x = S in ¢”)[e,].

The rest of the cases are similar.

Part 2. Trivial by induction on the structure of the dynamic expression e.

Theorem E.11 (Progress) 1. Ife; ¥; e ¢ :Tand u~ X, then either u, e —> error, or e is a dynamic expression
eq, or there exist y and €' such that u, e —; 1/, €.

2. Ife; X; el-ey:Tand u~ ¥, then either u, e — error, or ey is a value v, or there exist i’ and e& such that
H, €q —>,Ll,, ei]'

Part 1 First, we use the unique decomposition lemma E.10, we get that either e is a dynamic expression, in
which case we are done; or a decomposition into 8[¢/]. In that case, we use the lemma E.8 and part 2 to get
that either €/, is a value or that some progress can be made: either by failing or getting a 4/, ¢/}, in which case
we use the appropriate rule for —; either to fail or to progress to i/, 8[e])]. If €/, is a value, then we split cases
depending on 8 — if it is simply letstatic x = e in e or it is nested. In both cases we make progress using the
appropriate step rule.

Part 2 Identical as before.

F. Collapsing terms with extension variables into terms with normal variables

Definition F.1 A decidable judgement for deciding whether a term t, a context ®, etc. are collapsable to a
normal logical term is given below.

Intuitively, it defines as collapsable terms where all context & involved (even inside extension variable types)
are subcontexts of a single context @” (which is the result of the procedure), and all extension variables are used
with identity substitutions of that context.

’ collapsible (¥) <@’ > "

collapsible (¥) <@’ >®”  collapsible (K) <®” >®"”
collapsible (o) <@’ >’ collapsible (¥, K) <®'>®"

’ collapsible (K) <@’ > " ‘

K=T  collapsible (T)<®'>®" collapsible (®) <@’ > "
collapsible (K) <@’ > ®" collapsible ([®] ctx) <@’ > D"

’ collapsible (7') <@’ >®”

collapsible (@) <«®'>®"  collapsible (1) <®"” collapsible (®1, ®,) 1P >P”
collapsible ([®@]#) <@ >D" collapsible ([@;]®,) <P > D"
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’ collapsible (®) <@’ > "

collapsible (®) <@’ >®” & ="  collapsible (t) <®

collapsible (o) <@’ > @’ collapsible (®, 1) 1@ > (P, 1)
collapsible (@)« @' >®"  ®Cd”  collapsible (1) <" collapsible (@) <@’ >®" P =@"
collapsible (®, 1) 1@ >P" collapsible (®, X;) <®'> (P, X;)

collapsible (®) <@’ >d” & C P
collapsible (®, X;) <@’ >®"

’collapsible (1) <@

collapsible (s) <@’ collapsible (¢) <@’ collapsible ( f1) <@’

collapsible (1) <®"  collapsible ([,]) <@’ collapsible (1) <®"  collapsible ([,]) <@’
collapsible (A(t1).t) <@’ collapsible (I1(t;).t;) <@’

collapsible (1) <®"  collapsible () <@’ collapsible (1) <®"  collapsible () <@’
collapsible (11 ) <@’ collapsible (t1 = ;) <@’

o Cid®’
collapsible (X;/c) <@’

’collapsible (PHET:K)>d'

collapsible (‘P) <e>®"  collapsible (K) <@’ >®"  collapsible (T) <®" > D"
collapsible (¥ - T : K) >®”

’ collapsible (¥ - ® wf) >’

collapsible (‘¥) <e>®"  collapsible (P) <®' > D"
collapsible (‘¥ - @ wf) > "

Lemma F.2 1. If collapsible (D) <@’ >®" then either ® C ® and @ =, or ® C ¥ and " = @'
2. If collapsible (P + [®]1 : [@]tr) > D' then  C P'.
3. If collapsible (¥ I [@¢] @ : [Do] 1) > D' then Py, P; C D'

Trivial by structural induction.
Lemma F.3 1. If collapsible (¥) <e>® and ® C &' then collapsible (V) <D’ >P'.
2. If collapsible (K) < e>® and ® C @’ then collapsible (K) 1®'>P'.

3. If collapsible (T ) <e>® and ® C @' then collapsible (T) <®'>d'.
4. If collapsible (®y) < o> and ® C &' then collapsible (Pg) <P’ >P'.
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Trivial by structural induction on the collapsing relation.

Lemma F4 If =¥ wf and collapsible (V) < e > @O then there exist W', G\IP, Gi,, ®! 6! and 67! such that:
Yol Y,

ol Glzy syl

PlE ! wf,

¥l ol ol @06l

¥, ool l.6l,

for all t such that W; ®° -t :t', we have t - 6\11, .o! -G?P -6~ ! =1, and all members of ¥'! are of the form [®*]t
where ®* C ®!.

By induction on the derivation of the relation collapsible (V) <e>®°.

CaseV = >
We choose W! = o GEI, = 62.{, —eo: Pl —e;0' —e; 0! = e P! = e and the desired trivially hold.

Case ¥ =¥, [®|ctx >
From the collapsable relation, we get: collapsible (') < e > ®", collapsible ([®] ctx) <@ > ®°. By induction
hypothesis for ¥/, get:
Yol ¥,
o G({% 20
W @' wi,
qﬂl; q)/l - G/] . CID,O'GQ,,
‘P/; (I)/O - 6/71 . q)/l .0&2’7
for all ¢ such that ¥/; ®° 7 : ¢, we have ¢ - GQ, .o’ -0(12, .0’~! =¢, and all members of ¥'! are of the
form [®*]¢ where ®* C @'!.
By inversion of typing for [®]ctx we get that ¥’ - & wf.
We fix o, = 6, [®@-6l}] which is a valid choice as long as we select P! so that ¢! C W!. This substitution
has correct type by taking into account the substitution lemma for & and 6(11,.
For choosing the rest, we proceed by induction on the derivation of ®° C @Y.
If &Y = &0, then:
We have & C ®"° because of the previous lemma.
Choose ¥! =¥ ; (5\21, = 6({% Pl =@ .6l =0 ;6 =0
Everything holds trivially, other than G\lp typing. This too is easy to prove by taking into account the
substitution lemma for & and GQ,. Also, o'~ typing uses extension variable weakening. Last, for the
cancellation part, terms that are typed under ¥ are also typed under ¥’ so this part is trivial too.
If &% = @0, ¢, then: (here we abuse things slightly — by identifying the context and substitutions from induction
hypothesis with the ones we already have: their properties are the same for the new ®"°)
We have ® = ®° = &, ¢ because of the previous lemma (®° is not @ thus ®° = P).
First, choose ®' = @' ¢-6{, - ¢’!. This is a valid choice, because ¥'; & I- ¢ : 5; by applying o4 we
get W', @0 .ol 1.6 : 5; by applying 6'! we get ¥'!; @1 1.6l -0l i 5.
Thus W' - @' -6 - o'! wf (and the ¥! we will choose is supercontext of ¥'!).
Now, choose ¥! =W [®@]t- ol - ¢’!. This is well-formed because of what we proved above about
the substituted #, taking weakening into account. Also, the condition for the contexts in ¥! being
subcontexts of ®! obviously holds.
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Choose 6§ = 65, [®1] fig1|. We have o - o§, : W' directly by our construction.

Choose ' = 6", fig1|. We have that this latter term can be typed as W'; ®' I fig1 :7-6{ -6’1, and
thus we have P!; @' =o' : 0. 6l, 1-of.

Choose 6! = 6’1, fian|, which is typed correctly since 7 - 6({1, o'l ~(5({2, -0~ ! =t. Last, assume
¥; @, t1t, :t.. We prove t*-c\ll,-cl -02\{,-0*1 =t,.

First, t, is also typed under ¥’ because t, cannot use the newly-introduced variable directly
(even in the case where it would be part of Py, there’s still no extension variable that has
X)g| in its context).
Thus it suffices to prove .. -6 -6' -6%, -6~ =1,.
Then proceed by structural induction on t,. The only interesting case occurs when ¢, =
Jfian|, in which case we have:
fion| 046" 0467 = figngy 160407 = fign| 046" = figngy 0 = flan
If &0 = @O, X;:
By well-formedness inversion we get that W.i = [®,]ctx, and by repeated inversions of the col-
lapsable relation we get ®, C @
Choose ®! = @'t ;9! =W 6 =0, 6! =007 =0
Most desiderata are trivial. For 6!, note that (®'!, X;) - o}, = ®'! - 6{}, since by construction we have
that G(II. always substitutes parametric contexts by the empty context.
For cancellation, we need to prove that for all ¢ such that \¥; DO Xkt t., we have ‘GLIP .ol
6\21, -6~! =t,. This is proved directly by noticing that z, is typed also under ¥’ (if X; was the just-
introduced variable, it wouldn’t be able to refer to itself).

Case ¥ =¥, [®]r >
From the collapsable relation, we get: collapsible (V') <e>®", collapsible (P) <@ > P, collapsible (1) <®. By
induction hypothesis for ¥/, get:
Wk ol W,
ool ¥,
W @ wf,
va e
P @O b oo,
for all ¢ such that ¥'; &7 : ¢, we have ¢ - GQ, .o’ -G(f, .0’~! =¢, and all members of ¥'! are of the
form [®*]¢ where ®* C @'!.
Also from typing inversion we get: V' - ® wfand ¥'; ® 7 :s.
We proceed similarly as in the previous case, by induction on ®° C ®°, in order to redefine ¥, 6}, 63, @', 6’1 |6~
with the properties:
gl GQ; 2
o G(Iz, a2
W= @' wi,
‘P’l' (1)/1 - 6/1 . (I)O.G’l
\P/_ CI)O - G/71 . q)/l 'G\%
for all 7 such that ¥/; ®° ¢ : ¢/, we have ¢ - 6(11, o'l (5(12, -0’~1 =1, and all members of ¥'! are of the
form [®*]¢ where ®* C @'!.
Now we have ® C ®° thus ¥'; &+ ¢ : 5.
By applying 6{ and then ¢’ to t we get ¥''; @' 7.6l -6’ : 5. We can now choose ! = @1 - 6{} - o'!.
Choose ¥! =Wl [®!]t- 6l -0’1 It is obviously well-formed.
Now, will choose 6\1{,:
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Need to choose ¢! such that ¥!; & - G(Il, Felt -0({1,.

Assuming ¢! :X‘q,/l‘/c, we needt-(S(Il,~(5’1 ‘0= t-G({l, and ¥'; <I>-G(Il, Fo:d!

Thus, what we require is the inverse of 6!. By construction, there exists such a 6, because ' is just

a variable renaming. (Note that this is different from s 1)

Therefore, set Gl = Oy, [®]X|e1|/0, which has the desirable properties.
Choose 63 = 6, [®'] fign|. We trivially have o - 6§, : W'
Choose 6! = 6’1, with typing holding obviously.
Choose 6! =o' !, X)y|/id®. Consider the cancellation fact; typing is then possible.
It remains to prove that for all , such that ¥’ [®]¢; ®° -1, : ¢/, we have ¢ - G&F .ol ~02.{, o l=1¢.
This is done by structural induction on ¢, with the interesting case being . = Xy|/0.. By inversion of col-
lapsable relation, we get that 6, = id®d.
Thus (Xjg|/id®) -6y -6' 64,0~ = (X/¢1)/0) - (idP-0Y,)-6' 050~ = (Xj¢n|/0) - (id®-0Y) 6! 04,07 =
(Xj@1(/0) 0" 04 67! = (Xjgn|/(6-6")) 0§ 67" = (Xgn/(id®")) - 0§ -6~ = (fign| - (0P -65)) - 07" =
(fion| -d®!-65) - 67" = fign.gy 6 = Xy /idD.

Theorem E.5 If W = [®]7 : [@]tr and collapsible (¥ + [®]1 : [®]tr) = P, then there exist ¥/, t', t} and G such
that o = @' wf, o b [t : [¥|t}, ¥; P+o: P, /-6 =tandt} -6 =t1r.

Easylto prove using above lemma. Set ® = ®! .6, =10l 0! - 0%, t; =17 -0, - 6! - 6%, and also set
c=0".
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A Case for Behavior-Preserving Actions in
Separation Logic

David Costanzo and Zhong Shao

Yale University

Abstract. Separation Logic is a widely-used tool that allows for local
reasoning about imperative programs with pointers. A straightforward
definition of this “local reasoning” is that, whenever a program runs
safely on some state, adding more state would have no effect on the pro-
gram’s behavior. However, for a mix of technical and historical reasons,
local reasoning is defined in a more subtle way, allowing a program to
lose some behaviors when extra state is added. In this paper, we propose
strengthening local reasoning to match the straightforward definition
mentioned above. We argue that such a strengthening does not have any
negative effect on the usability of Separation Logic, and we present four
examples that illustrate how this strengthening simplifies some of the
metatheoretical reasoning regarding Separation Logic. In one example,
our change even results in a more powerful metatheory.

1 Introduction

Separation Logic [8,13] is widely used for verifying the correctness of C-like
imperative programs [9] that manipulate mutable data structures. It supports
local reasoning [15]: if we know a program’s behavior on some heap, then we
can automatically infer something about its behavior on any larger heap. The
concept of local reasoning is embodied as a logical inference rule, known as the
frame rule. The frame rule allows us to extend a specification of a program’s
execution on a small heap to a specification of execution on a larger heap.

For the purpose of making Separation Logic extensible, it is common practice
to abstract over the primitive commands of the programming language being
used. By “primitive commands” here, we mean commands that are not defined
in terms of other commands. Typical examples of primitive commands include
variable assignment z := E and heap update [E] := E’. One example of a
non-primitive command is while Bdo C.

When we abstract over primitive commands, we need to make sure that we
still have a sound logic. Specifically, it is possible for the frame rule to become
unsound for certain primitive commands. In order to guarantee that this does not
happen, certain “healthiness” conditions are required of primitive commands. We
refer to these conditions together as “locality,” since they guarantee soundness
of the frame rule, and the frame rule is the embodiment of local reasoning.

As one might expect, locality in Separation Logic is defined in such a way that
it is precisely strong enough to guarantee soundness of the frame rule. In other
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words, the frame rule is sound if and only if all primitive commands are local.
In this paper, we consider a strengthening of locality. Clearly, any strengthening
will still guarantee soundness of the frame rule. The tradeoff, then, is that the
stronger we make locality, the fewer primitive commands there will be that satisfy
locality. We claim that we can strengthen locality to the point where: (1) the
usage of the logic is unaffected — specifically, we do not lose the ability to model
any primitive commands that are normally modeled in Separation Logic; (2) our
strong locality is precisely the property that one would intuitively expect it to
be — that the behavior of a program is completely independent from any unused
state; and (3) we significantly simplify various technical work in the literature
relating to metatheoretical facts about Separation Logic. We refer to our stronger
notion of locality as “behavior preservation,” because the behavior of a program
is preserved when moving from a small state to a larger one.

We justify statement (1) above, that the usage of the logic is unaffected,
in Section 3 by demonstrating a version of Separation Logic using the same
primitive commands as the standard one presented in [13], for which our strong
locality holds. We show that, even though we need to alter the state model of
standard Separation Logic, we do not need to change any of the inference rules.
We justify the second statement, that our strong locality preserves program
behavior, in Section 2. We will also show that the standard, weaker notion of
locality is not behavior-preserving. We provide some justification of the third
statement, that behavior preservation significantly simplifies Separation Logic
metatheory, in Section 5 by considering four specific examples in detail. As a
primer, we will say a little bit about each example here.

The first simplification that we show is in regard to program footprints, as
defined and analyzed in [12]. Informally, a footprint of a program is a set of
states such that, given the program’s behavior on those states, it is possible to
infer all of the program’s behavior on all other states. Footprints are useful for
giving complete specifications of programs in a concise way. Intuitively, locality
should tell us that the set of smallest safe states, or states containing the minimal
amount of resources required for the program to safely execute, should always
be a footprint. However, this is not the case in standard Separation Logic. To
quote the authors in [12], the intuition that the smallest safe states should form
a footprint “fails due to the subtle nature of the locality condition.” We show
that in the context of behavior-preserving locality, the set of smallest safe states
does indeed form a footprint.

The second simplification regards the theory of data refinement, as defined
in [6]. Data refinement is a formalism of the common programming paradigm in
which an abstract module, or interface, is implemented by a concrete instantia-
tion. In the context of [6], our programming language consists of a standard one,
plus abstract module operations that are guaranteed to satisfy some specifica-
tion. We wish to show that, given concrete and abstract modules, and a relation
relating their equivalent states, any execution of the program that can happen
when using the concrete module can also happen when using the abstract one.
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We simplify the data refinement theory by eliminating the need for two some-
what unintuitive requirements used in [6], called contents independence and
growing relations. Contents independence is a strengthening of locality that is
implied by the stronger behavior preservation. A growing relation is a technical
requirement guaranteeing that the area of memory used by the abstract mod-
ule is a subset of that used by the concrete one. It turns out that behavior
preservation is strong enough to completely eliminate the need to require grow-
ing relations, without automatically implying that any relations are growing.
Therefore, we can prove refinement between some modules (e.g., ones that use
completely disjoint areas of memory) that the system of [6] cannot handle.

Our third metatheoretical simplification is in the context of Relational Sepa-
ration Logic, defined in [14]. Relational Separation Logic is a tool for reasoning
about the relationship between two executions on different programs. In [14],
soundness of the relational frame rule is initially shown to be dependent on pro-
grams being deterministic. The author presents a reasonable solution for making
the frame rule sound in the presence of nondeterminism, but the solution is some-
what unintuitive and, more importantly, a significant chunk of the paper (about
9 pages out of 41) is devoted to developing the technical details of the solution.
We show that under the context of behavior preservation, the relational frame
rule as initially defined is already sound in the presence of nondeterminism, so
that section of the paper is no longer needed.

The fourth simplification is minor, but still worth noting. For technical rea-
sons, the standard definition of locality does not play well with a model in which
the total amount of available memory is finite. Separation Logic generally avoids
this issue by simply using an infinite space of memory. This works fine, but there
may be situations in which we wish to use a model that more closely represents
what is actually going on inside our computer. While Separation Logic can be
made to work in the presence of finite memory, doing so is not a trivial matter.
We will show that under our stronger notion of locality, no special treatment is
required for finite-sized models.

All proofs in Sections 3 and 4 have been fully mechanized in the Coq proof
assistant [7]. The Coq source files, along with their conversions to pdf, can be
found at the link to the technical report for this paper [5].

2 Locality and Behavior Preservation

In standard Separation Logic [8,13,15,4], there are two locality properties,
known as Safety Monotonicity and the Frame Property, that together imply
soundness of the frame rule. Safety Monotonicity says that any time a program
executes safely in a certain state, the same program must also execute safely in
any larger state — in other words, unused resources cannot cause a program to
crash. The Frame Property says that if a program executes safely on a small
state, then any terminating execution of the program on a larger state can be
tracked back to some terminating execution on the small state by assuming that
the extra added state has no effect and is unchanged. Furthermore, there is a

162



third property, called Termination Monotonicity, that is required whenever we
are interested in reasoning about divergence (nontermination). This property
says that if a program executes safely and never diverges on a small state, then
it cannot diverge on any larger state.

To describe these properties formally, we first formalize the idea of program
state. We will describe the theory somewhat informally here; full formal detail
will be described later in Section 4. We define states ¢ to be members of an
abstract set 2. We assume that whenever two states og and o; are “disjoint,”
written og#071, they can be combined to form the larger state og-oq. Intuitively,
two states are disjoint when they occupy disjoint areas of memory.

We represent the semantic meaning of a program C' by a binary relation [C].
We use the common notational convention aRb for a binary relation R to denote
(a,b) € R. Intuitively, o[C]o’ means that, when executing C on initial state o,
it is possible to terminate in state o’. Note that if o is related by [C] to more
than one state, this simply means that C' is a nondeterministic program.

We also define two special behaviors bad and div:

— The notation o[C]bad means that C' can crash or get stuck when executed
on o, while

— The notation o[C]div means that C' can diverge (execute forever) when
executed on o.

As a notational convention, we use 7 to range over elements of X'U{bad, div}.
We require that for any state o and program C, there is always at least one 7 such
that o[C]7. In other words, every execution must either crash, go on forever, or
terminate in some state.

Now we can define the properties described above more formally. Following
are definitions of Safety Monotonicity, the Frame Property, and Termination
Monotonicity, respectively:

1) ﬂO’Q[[CHbad/\Jo#Jl :>ﬂ(00~01)[[C]]bad
2.) —0o[Clvad A (0¢ - 01)[Co’ = o, . ¢’ = a{, - 01 A 00[C] oy,
3.) —0o[[Clvad A —oo[C]div A oo#o1 = = (0 - 01)[C]div

The standard definition of locality was defined in this way because it is the
minimum requirement needed to make the frame rule sound — it is as weak as
it can possibly be without breaking the logic. It was not defined to correspond
with any intuitive notion of locality. As a result, there are two subtleties in the
definition that might seem a bit odd. We will now describe these subtleties and
the changes we make to get rid of them. Note that we are not arguing in this
section that there is any benefit to changing locality in this way (other than
the arguably vacuous benefit of corresponding to our “intuition” of locality) —
the benefit will become clear when we discuss how our change simplifies the
metatheory in Section 5.

The first subtlety is that Termination Monotonicity only applies in one di-
rection. This means that we could have a program C that runs forever on a
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state o, but when we add unused state, we suddenly lose the ability for that
infinite execution to occur. We can easily get rid of this subtlety by replacing
Termination Monoticity with the following Termination Equivalence property:

—09[Clbad A oo#o1 = (00[Cldiv <= (o0 - 01)[C]div)

The second subtlety is that locality gives us a way of tracking an execution
on a large state back to a small one, but it does not allow for the other way
around. This means that there can be an execution on a state o that becomes
invalid when we add unused state. This subtlety is a little trickier to remedy
than the other. If we think of the Frame Property as really being a “Backwards
Frame Property,” in the sense that it only works in the direction from large state
to small state, then we clearly need to require a corresponding Forwards Frame
Property. We would like to say that if C takes og to of, and we add the unused
state o1, then C takes o - 01 to o, - 01:

ao[Clog A ooftar = (00 - 01)[C](0) - 1)

Unfortunately, there is no guarantee that of, - 01 is defined, as the states
might not occupy disjoint areas of memory. In fact, if C' causes our initial state
to grow, say by allocating memory, then there will always be some oy that is
disjoint from o but not from of, (e.g., take o1 to be exactly that allocated
memory). Therefore, it seems as if we are doomed to lose behavior in such a
situation upon adding unused state.

There is, however, a solution worth considering: we could disallow programs
from ever increasing state. In other words, we can require that whenever C' takes
oo to o{), the area of memory occupied by o, must be a subset of that occupied
by o¢. In this way, anything that is disjoint from oy must also be disjoint from
0§, so we will not lose any behavior. Formally, we express this property as:

00[Clog = (Vo1 . ao#o1 = oo#o1)

We can conveniently combine this property with the previous one to express
the Forwards Frame Property as the following condition:

ao[Cllog A ooftor = oo#or A (oo - 01)[[0]](06 - 01)

At first glance, it may seem imprudent to impose this requirement, as it
apparently disallows memory allocation. However, it is in fact still possible to
model memory allocation — we just have to be a little clever about it. Specif-
ically, we can include a set of memory locations in our state that we designate
to be the “free list'.” When memory is allocated, all allocated cells must be
taken from the free list. Contrast this to standard Separation Logic, in which
newly-allocated heap cells are taken from outside the state. In the next section,
we will show that we can add a free list in this way to the model of Separation
Logic without requiring a change to any of the inference rules.

We conclude this section with a brief justification of the term “behavior preser-
vation.” Given that C' runs safely on a state og, we think of a behavior of C on

! The free list is actually a set rather than a list; we use the term “free list” because
it is commonly used in the context of memory allocation.
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E =FE+F |E-E|ExE|...]=1]|0]1]|...|z]|y]-..

B u:=FE=FE'|false| B= B’
P,Q =B |false|emp | E—FE | P=Q |Vz.P| PxQ
C u=skip|z:=FE |z:=[FE]|[E]:=FE

| z:= cons(F1,...,E,) | free(E) | C;C’
| if Bthen(Celse (' | while BdoC

Fig. 1. Assertion and Program Syntax

0¢ as a particular execution, which can either diverge or terminate at some state
0§- The Forwards Frame Property tells us that execution on a larger state - 01
simulates execution on the smaller state g, while the Backwards (standard)
Frame Property says that execution on the smaller state simulates execution on
the larger one. Since standard locality only requires simulation in one direction,
it is possible for a program to have fewer valid executions, or behaviors, when
executing on o - 01 as opposed to just og. Our stronger locality disallows this
from happening, enforcing a bisimulation under which all behaviors are preserved
when extra resources are added.

3 Impact on a Concrete Separation Logic

We will now present one possible RAM model that enforces our stronger notion of
locality without affecting the inference rules of standard Separation Logic. In the
standard model of [13], a program state consists of two components: a variable
store and a heap. When new memory is allocated, the memory is “magically”
added to the heap. As shown in Section 2, we cannot allow allocation to increase
the program state in this way. Instead, we will include an explicit free list, or
a set of memory locations available for allocation, inside of the program state.
Thus a state is now is a triple (s, h, f) consisting of a store, a heap, and a free list,
with the heap and free list occupying disjoint areas of memory. Newly-allocated
memory will always come from the free list, while deallocated memory goes back
into the free list. Since the standard formulation of Separation Logic assumes that
memory is infinite and hence that allocation never fails, we similarly require that
the free list be infinite. More specifically, we require that there is some location
n such that all locations above n are in the free list.
Formally, states are defined as follows:

VarVé{x,y,z,...} Store S2V - Z HeapHéN?Z
Free List F 2 {N € P(N) | 3n.Vk >n .k e N}
State ¥ 2 {(s,h, f) € S x H x F | dom(h) N f = 0}

As a point of clarification, we are not claiming here that including the free
list in the state model is a novel idea. Other systems (e.g., [12]) have made use of
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a very similar idea. The two novel contributions that we will show in this section
are: (1) that a state model which includes an explicit free list can provide a
behavior-preserving semantics, and (2) that the corresponding program logic can
be made to be completely backwards-compatible with standard Separation Logic
(meaning that any valid Separation Logic derivation is also a valid derivation in
our logic).

Assertion syntax and program syntax are given in Figure 1, and are exactly
the same as in the standard model for Separation Logic.

Our satisfaction judgement (s, h, f) = P for an assertion P is defined by ig-
noring the free list and only considering whether (s, h) satisfies P. Our definition
of (s,h) = P is identical to that of standard Separation Logic.

The small-step operational semantics for our machine is defined as o,C —
o',C" and is straightforward; the full details can be found in the extended
TR. The most interesting aspects are the rules for allocation and dealloca-
tion, since they make use of the free list.  := cons(E4,..., E,) allocates a
nondeterministically-chosen contiguous block of n heap cells from the free list,
while free(FE) puts the single heap cell pointed to by E back onto the free list.
None of the operations make use of any memory existing outside the program
state — this is the key for obtaining behavior-preservation.

To see how out state model fits into the structure defined in Section 2, we
need to define the state combination operator. Given two states o1 = (s1, h1, f1)
and o2 = (82, ha, f2), the combined state o1 - o2 is equal to (s1,h; W ha, f1) if
s1 = S2, fi = f2, and the domains of h; and hs are disjoint; otherwise, the
combination is undefined. Note that this combined state satisfies the requisite
condition dom(hy W hy) N f1 = () because hi, ho, and f; are pairwise disjoint by
assumption. The most important aspect of this definition of state combination
is that we can never change the free list when adding extra resources. This guar-
antees behavior preservation of the nondeterministic memory allocator because
the allocator’s set of possible behaviors is precisely defined by the free list.

In order to formally compare our logic to “standard” Separation Logic, we
need to provide the standard version of the small-step operational semantics,
denoted as (s,h),C ~ (s',h’),C’. This semantics does not have explicit free
lists in the states, but instead treats all locations outside the domain of h as
free. We formalize this semantics in the extended TR, and prove the following
relationship between the two operational semantics:

(s,h),C ~=(s',1),C" <= 3f, f" . (s,h, [),C == (s, W, ), C"

The inference rules in the form F {P} C{Q} for our logic are same as those
used in standard Separation Logic. In the extended TR, we state all the inference
rules and prove that our logic is both sound and complete; therefore, behavior
preservation does not cause any complications in the usage of Separation Logic.
Any specification that can be proved using the standard model can also be proved
using our model. Also in the TR, we prove that our model enjoys the stronger,
behavior-preserving notion of locality described in Sec 2.

Even though our logic works exactly the same as standard Separation Logic,
our underlying model now has this free list within the state. Therefore, if we
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so desire, we could define additional assertions and inference rules allowing for
more precise reasoning involving the free list. One idea is to have a separate,
free list section of assertions in which we write, for example, FE * true to claim
that E is a part of the free list. Then the axiom for free would look like:

{E — —;true} free(F) {emp; E * true}

4 The Abstract Logic

In order to clearly explain how our stronger notion of locality resolves the
metatheoretical issues described in Section 1, we will first formally describe how
our locality fits into a context similar to that of Abstract Separation Logic [4].
With a minor amount of work, the logic of Section 3 can be molded into a
particular instance of the abstract logic presented here.

We define a separation algebra to be a set of states X', along with a partial
associative and commutative operator - : X — X — 3. The disjointness relation
oo#0o1 holds iff 0g -0y is defined, and the substate relation oy < oy holds iff there
is some o, such that o¢ - o), = 01. A particular element of X' is designated as a
unit state, denoted u, with the property that for any o, c#u and o - u = 0. We
require the - operator to be cancellative, meaning that o-0g = 0-01 = 09 = 01.

An action is a set of pairs of type X U{bad,div} x X U{bad,div}. We require
the following two properties: (1) actions always relate bad to bad and div to div,
and never relate bad or div to anything else; and (2) actions are total, in the
sense that for any 7, there exists some 7/ such that 7 A7’ (recall from Section 2
that we use 7 to range over elements of X' U {bad,div}). Note that these two
requirements are preserved over the standard composition of relations, as well
as over both finitary and infinite unions. We write Id to represent the identity
action {(7,7) | 7 € ¥ U {bad,div}}.

Note that it is more standard in the literature to have the domain of actions
range only over X — we use X' U{bad, div} here because it has the pleasant effect
of making [Cy;C3] correspond precisely to standard composition. Intuitively,
once an execution goes wrong, it continues to go wrong, and once an execution
diverges, it continues to diverge.

A local action is an action A that satisfies the following four properties, which
respectively correspond to Safety Monotonicity, Termination Equivalence, the
Forwards Frame Property, and the Backwards Frame Property from Section 2:

) mogAbad A og#o1 = —(0g - 01)Abad

.) mopAbad A og#o1 = (0pAdiv <= (0 - 01)Adiv)
) oo Ac) A oo#or = o#o1 A (og - 01)A(0] - 01)

) mogAbad A (0¢ - 01)Ac’ = Jo|, . 0/ = 0, - 01 A 0 Ac)

We denote the set of all local actions by LocAct. We now show that the set
of local actions is closed under composition and (possibly infinite) union. We use

167



C u=c|C;;C |C1+Cy | CF

Ve . [c] € LocAct [C1;Co] = [Ci]; [C2]
[C1 +Ca] & [Ci]U[Ce] [c12 Jler
[C]° £ 1a [c1"* £ [c); [C]”

Fig. 2. Command Definition and Denotational Semantics

the notation A;; As to denote composition, and | J.A to denote union (where A
is a possibly infinite set of actions). The formal definitions of these operations
follow. Note that we require that A be non-empty. This is necessary because
(J 0 is @, which is not a valid action. Unless otherwise stated, whenever we write
|J A, there will always be an implicit assumption that A4 # ().

TA AT = I T AT AT AT
TUAT' < JAe A.TAT (A#0)

Lemma 1. If Ay and As are local actions, then Ay; As is a local action.
Lemma 2. If every A in the set A is a local action, then |J A is a local action.

Figure 2 defines our abstract program syntax and semantics. The language
consists of primitive commands, sequencing (Ci;C3), nondeterministic choice
(C1 + C3), and finite iteration (C*). The semantics of primitive commands are
abstracted — the only requirement is that they are local actions. Therefore, from
the two previous lemmas and the trivial fact that Id is a local action, it is clear
that the semantics of every program is a local action.

Note that in our concrete language used if statements and while loops. As
shownin [4], it is possible to represent if and while constructs with finite itera-
tion and nondeterministic choice by including a primitive command assume(B),
which does nothing if the boolean expression B is true, and diverges otherwise.

Now that we have defined the interpretation of programs as local actions, we
can talk about the meaning of a triple {P} C {Q}. We define an assertion P to
be a set of states, and we say that a state o satisfies P iff 0 € P. We can then
define the separating conjunction as follows:

P+Q2{oeX|300€Po1€Q.0=0y 01}

Given an assignment of primitive commands to local actions, we say that a
triple is valid, written = {P} C {Q}, just when the following two properties hold
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—o[c]bad F{P}C:i{Q} F{Q} C:{R}

o etto Toldoy T oGy
- fl{g}cl T ;j fcg}@ v % (STAR)
. {;*{ggig}* 7y (FRAME) PCP :gigig,}} QCqQ (coNsEQ)
ey el it

Fig. 3. Inference Rules

for all states o and o':

1.) 0 € P = —¢[C]bad
2)oc€PAo[C]lo’ =o' €Q

The inference rules of the logic are given in Figure 3. Note that we are tak-
ing a significant presentation shortcut here in the inference rule for primitive
commands. Specifically, we assume that we know the exact local action [c] of
each primitive command c. This assumption makes sense when we define our
own primitive commands, as we do in the logic of Section 3. However, in a more
general setting, we might be provided with an opaque function along with a spec-
ification (precondition and postcondition) for the function. Since the function is
opaque, we must consider it to be a primitive command in the abstract setting.
Yet we do not know how it is implemented, so we do not know its precise local
action. In [4], the authors provide a method for inferring a “best” local action
from the function’s specification. With a decent amount of technical develop-
ment, we can do something similar here, using our stronger definition of locality.
These details can be found in the technical report [5].

Given this assumption, we prove soundness and completeness of our abstract
logic. The details of the proof can be found in our Coq implementation [5].

Theorem 1 (Soundness and Completeness).

F{prC{Q} = R {P}1C{Q}

5 Simplifying Separation Logic Metatheory

Now that we have an abstracted formalism of our behavior-preserving local ac-
tions, we will resolve each of the four metatheoretical issues described in Sec 1.
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5.1 Footprints and Smallest Safe States

Consider a situation in which we are handed a program C' along with a specifi-
cation of what this program does. The specification consists of a set of axioms;
each axiom has the form {P} C' {Q} for some precondition P and postcondition
Q. A common question to ask would be: is this specification complete? In other
words, if the triple = {P} C {Q} is valid for some P and @, then is it possible
to derive F {P} C {Q} from the provided specification?

In standard Separation Logic, it can be extremely difficult to answer this
question. In [12], the authors conduct an in-depth study of various conditions
and circumstances under which it is possible to prove that certain specifications
are complete. However, in the general case, there is no easy way to prove this.

We can show that under our assumption of behavior preservation, there is
a very easy way to guarantee that a specification is complete. In particular, a
specification that describes the exact behavior of C' on all of its smallest safe
states is always complete. Formally, a smallest safe state is a state o such that
-0 [C]bad and, for all o’ < o, o’'[C]bad.

To see that such a specification may not be complete in standard Separation
Logic, we borrow an example from [12]. Consider the program C, defined as
x := cons(0); free(x). This program simply allocates a single cell and then frees
it. Under the standard model, the smallest safe states are those of the form (s, )
for any store s. For simplicity, assume that the only variables in the store are
x and y. Define the specification to be the infinite set of triples that have the
following form, for any a, b in Z, and any a’ in N:

{r=aNy=bAemp}C{x=0ad Ny=0>bAemp}

Note that @’ must be in N because only valid unallocated memory addresses can
be assigned into x. It should be clear that this specification describes the exact
behavior on all smallest safe states of C'. Now we claim that the following triple
is valid, but there is no way to derive it from the specification.

{r=any=bAy— —}C{z=d Ny=bAy+— —Ad #b}

The triple is clearly valid because a’ must be a memory address that was initially
unallocated, while address b was initially allocated. Nevertheless, there will not
be any way to derive this triple, even if we come up with new assertion syntax
or inference rules. The behavior of C on the larger state is different from the
behavior on the small one, but there is no way to recover this fact once we make
C opaque. It can be shown (see [12]) that if we add triples of the above form to
our specification, then we will obtain a complete specification for C. Yet there
is no straightforward way to see that such a specification is complete.

We will now formally prove that, in our system, there is a canonical form
for complete specification. We first note that we will need to assume that our
set of states is well-founded with respect to the substate relation (i.e., there
is no infinite strictly-decreasing chain of states). This assumption is true for
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most standard models of Separation Logic, and furthermore, there is no reason
to intuitively believe that the smallest safe states should be able to provide a
complete specification when the assumption is not true.

We say that a specification ¥ is complete for C' if, whenever = {P} C {Q} is
valid, the triple F {P} C {Q} is derivable using only the inference rules that are
not specific to the structure of C (i.e., the frame, consequence, disjunction, and
conjunction rules), plus the following axiom rule:

{pro{Qiev
F{PIC{Q}

For any o, let o[C] denote the set of all ¢’ such that o[C]o’. For any set of
states S, we define a canonical specification on S as the set of triples of the form
{{o}} C{o[C]} for any state o € S. If there exists a canonical specification on
S that is complete for C, then we say that S forms a footprint for C. We can
then prove the following theorem (see the extended TR):

Theorem 2. For any program C, the set of all smallest safe states of C forms
a footprint for C'.

Note that while this theorem guarantees that the canonical specification is
complete, we may not actually be able to write down the specification simply
because the assertion language is not expressive enough. This would be the case
for the behavior-preserving nondeterministic memory allocator if we used the
assertion language presented in Section 3. We could, however, express canonical
specifications in that system by extending the assertion language to talk about
the free list (as briefly discussed at the end of Section 3).

5.2 Data Refinement

In [6], the goal is to formalize the concept of having a concrete module correctly
implement an abstract one, within the context of Separation Logic. Specifically,
the authors prove that as long as a client program “behaves nicely,” any execu-
tion of the program using the concrete module can be tracked to a corresponding
execution using the abstract module. The client states in the corresponding ex-
ecutions are identical, so the proof shows that a well-behaved client cannot tell
the difference between the concrete and abstract modules.

To get their proof to work out, the authors require two somewhat odd proper-
ties to hold. The first is called contents independence, and is an extra condition
on top of the standard locality conditions. The second is called a growing rela-
tion — it refers to the relation connecting a state of the abstract module to its
logically equivalent state(s) in the concrete module. All relations connecting the
abstract and concrete modules in this way are required to be growing, which
means that the domain of memory used by the abstract state must be a subset
of that used by the concrete state. This is a somewhat unintuitive and restric-
tive requirement which is needed for purely technical reasons. We will show that
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behavior preservation completely eliminates the need for both contents indepen-
dence and growing relations.

We now provide a formal setting for the data refinement theory. This formal
setting is similar to the one in [6], but we will make some minor alterations to
simplify the presentation. The programming language is defined as:

C ==skip|c|m| Cy;Cy | if BthenC)elseCy
| while Bdo C

¢ is a primitive command (sometimes referred to as “client operation” in this
context). m is a module command taken from an abstracted set MOp (e.g., a
memory manager might implement the two module commands cons and free).

The abstracted client and module commands are assumed to have a seman-
tics mapping them to particular local actions. We of course use our behavior-
preserving notion of “local” here, whereas in [6], the authors use the three proper-
ties of safety monotonicity, the (backwards) frame property, and a new property
called contents independence. It is trivial to show that behavior preservation im-
plies contents independence, as contents independence is essentially a forwards
frame property that can only be applied under special circumstances.

A module is a pair (p,n) representing a particular implementation of the mod-
ule commands in MOp; the state predicate p describes the module’s invariant
(e.g., that a valid free list is stored starting at a location pointed to by a par-
ticular head pointer), while  is a function mapping each module command to
a particular local action. The predicate p is required to be precise [11], meaning
that no state can have more than one substate satisfying p (if a state o does
have a substate satisfying p, then we refer to that uniquely-defined state as o).
Additionally, all module operations are required to preserve the invariant p:

—o(nm)bad A o € p x true A o(mm)o’ => o’ € p* true

We define a big-step operational semantics parameterized by a module (p, 7).
This semantics is fundamentally the same as the one defined in [6]; the extended
TR contains the full details. The only aspect that is important to mention here
is that the semantics is equipped with a special kind of faulting called “access
violation.” Intuitively, an access violation occurs when a client operation’s ex-
ecution depends on the module’s portion of memory. More formally, it occurs
when the client operation executes safely on a state where the module’s mem-
ory is present (i.e., a state satisfying p * true), but faults when that memory is
removed from the state.

The main theorem that we get out of this setup is a refinement simulation
between a program being run in the presence of an abstract module (p,7n), and
the same program being run in the presence of a concrete module (g, ) that
implements the same module commands (i.e., || = | ], where the floor notation
indicates domain). Suppose we have a binary relation R relating states of the
abstract module to those of the concrete module. For example, if our modules
are memory managers, then R might relate a particular set of memory locations
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available for allocation to all lists containing that set of locations in some order.
To represent that R relates abstract module states to concrete module states, we
require that whenever o1 Ros, 01 € p and o2 € ¢q. Given this relation R, we can
make use of the separating conjunction of Relational Separation Logic [14] and
write R * Id to indicate the relation relating any two states of the form oy, - o,
and o4 - 0., where o,Ro,.

Now, for any module (p, n), let C[(p,n)] be notation for the program C whose
semantics have (p,n) filled in for the parameter module. Then our main theorem
says that, if n(f) simulates p(f) under relation R * Id for all f € |n], then for
any program C, C[(p,n)] also simulates C|(q, )] under relation R % Id. More
formally, say that Cy simulates C2 under relation R (written R;Cy C C1; R)
when, for all o1, o2 such that oy Ros:

1.) 01[Ci]bad <= o03[Cs]bad, and
2.) = o1[C1]vad = (Vo) . 02[Cs]ohy = o7 . o1[Ci]o} A o) Rab)

Theorem 3. Suppose we have modules (p,n) and (q,n) with |n| = |p] and a
refinement relation R as described above, such that R * Id;u(f) C n(f); R+ Id
[(p.m)

for all f € |n|. Then, for any program C, Rx1d;C[(q,un)] € C (p_,n |; R * Id.

While the full proof can be found in the extended TR, we will semi-formally
describe here the one case that highlights why behavior preservation eliminates
the need for contents independence and growing relations: when C' is simply a
client command ¢. We wish to prove that C[(p, )] simulates C[(g, u1)], so suppose
we have related states o1 and o, and executing ¢ on o3 results in o). Since oy
and o9 are related by R * Id, we have that 0y = 0}, - 0. and 02 = 04 - 0.. We
know that (1) o, - 0. > 05, (2) cis local, and (3) ¢ runs safely on o, because the
client operation’s execution must be independent of the module state o,; thus
the backwards frame property tells us that o = o, - 0/, and 0. - o’.. Now, if ¢
is behavior-preserving, then we can simply apply the forwards frame property,
framing on the state o,, to get that o,#0”. and 0, - 0. > 0, - o, completing
the proof for this case. However, without behavior preservation, contents inde-
pendence and growing relations are used in [6] to finish the proof. Specifically,
because we know that oy - o 5 oq4 - 0. and that ¢ runs safely on o., contents
independence says that o -0, < o - o/, for any o whose domain is a subset of the
domain of 4. Therefore, we can choose o = o, because R is a growing relation.

5.3 Relational Separation Logic

Relational Separation Logic [14] allows for simple reasoning about the relation-
ship between two executions. Instead of deriving triples { P} C' {Q}, a user of the
logic derives quadruples of the form:

RC’
8},

{5}
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R and S are binary relations on states, rather than unary predicates. Semanti-
cally, a quadruple says that if we execute the two programs in states that are
related by R, then both executions are safe, and any termination states will be
related by S. Furthermore, we want to be able to use this logic to prove program
equivalence, so we also require that initial states related by R have the same
divergence behavior. Formally, we say that the above quadruple is valid if, for
any states o1, gq, 0, 04:

1.) o1 Roy = =01 [C]bad A —o2[C']bad
2.) 01Ros = (01[C]div < 03[C']div)
3.) o1Roa A 01[Cloy A o2[C'|ohy = 0 Sy

Relational Separation Logic extends the separating conjunction to work for
relations, breaking related states into disjoint, correspondingly-related pieces:

Ol(R*S)O'Q +— 3 O1r, O1sy, O2p, O2g -

01 =01y - 015 AN Og = 02 - 025 N 01, RO N 01,5025

Just as Separation Logic has a frame rule for enabling local reasoning, Rela-
tional Separation Logic has a frame rule with the same purpose. This frame rule
says that, given that we can derive the quadruple above involving R, S, C, and
C’, we can also derive the following quadruple for any relation T

RTCST
(ReT} {8+T)

In [14], it is shown that the frame rule is sound when all programs are determin-
istic but it is unsound if nondeterministic programs are allowed, so this frame
rule cannot be used when we have a nondeterministic memory allocator.

To deal with nondeterministic programs, a solution is proposed in [14], in
which the interpretation of quadruples is strengthened. The new interpretation
for a quadruple containing R, S, C, and C’ is that, for any o4, 09, 0}, 0}, 0, o'

1.) 01 Roy = —01[C]bad A =03[C']bad
2.) 01Roy A o1#0 N os#to’ = ((01 - 0)[C]div < (0g-0')[C']div)
3.) o1Roa A o1[Cloy A 02[C']oy = o1 S

Note that this interpretation is the same as before, except that the second prop-
erty is strengthened to say that divergence behavior must be equivalent not only
on the initial states, but also on any larger states. It can be shown that the frame
rule becomes sound under this stronger interpretation of quadruples.

In our behavior-preserving setting, it is possible to use the simpler interpre-
tation of quadruples without breaking soundness of the frame rule. We could
prove this by directly proving frame rule soundness, but instead we will take a
shorter route in which we show that, when actions are behavior-preserving, a
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quadruple is valid under the first interpretation above if and only if it is valid
under the second interpretation — i.e., the two interpretations are the same in
our setting. Since the frame rule is sound under the second interpretation, this
implies that it will also be sound under the first interpretation.

Clearly, validity under the second interpretation implies validity under the
first, since it is a direct strengthening. To prove the inverse, suppose we have a
quadruple (involving R, S, C, and C”) that is valid under the first interpretation.
Properties 1 and 3 of the second interpretation are identical to those of the first,
so all we need to show is that Property 2 holds. Suppose that o1 Roo, o1#0, and
oa#ta’. By Property 1 of the first interpretation, we know that —o;[C]bad and
—03[C’']bad. Therefore, Termination Equivalence tells us that o1[C]div <=
(01-0)[C]div, and that o2[C']|div <= (02-0’)[C']div. Furthermore, we know
by Property 2 of the first interpretation that o [C]div <= 02[C’]div. Hence
we obtain our desired result.

In case the reader is curious, the reason that the frame rule under the first
interpretation is sound when all programs are deterministic is simply that deter-
minism (along with standard locality) implies Termination Equivalence. A proof
of this can be found in the extended TR.

5.4 Finite Memory

Since standard locality allows the program state to increase during execution,
it does not play nicely with a model in which memory is finite. Consider any
command that grows the program state in some way. Such a command is safe on
the empty state but, if we extend this empty state to the larger state consisting of
all available memory, then the command becomes unsafe. Hence such a command
violates Safety Monotonicity.

There is one commonly-used solution for supporting finite memory without
enforcing behavior preservation: say that, instead of faulting on the state consist-
ing of all of memory, a state-growing command diverges. Furthermore, to satisfy
Termination Monotonicity, we also need to allow the command to diverge on
any state. The downside of this solution, therefore, is that it is only reasonable
when we are not interested in the termination behavior of programs.

When behavior preservation is enforced, we no longer have any issues with
finite memory models because program state cannot increase during execution.
The initial state is obviously contained within the finite memory, so all states
reachable through execution must also be contained within memory.

6 Related Work and Conclusions

The definition of locality (or local action), which enables the frame rule, plays
a critical role in Separation Logic [8,13,15]. Almost all versions of Separation
Logic — including their concurrent [3, 10, 4], higher-order [2], and relational [14]
variants, as well as mechanized implementation (e.g., [1]) — have always used
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the same locality definition that matches the well-known Safety and Termination
Monotonicity properties and the Frame Property [15].

In this paper, we argued a case for strengthening the definition of locality
to enforce behavior preservation. This means that the behavior of a program
when executed on a small state is identical to the behavior when executed on a
larger state — put another way, excess, unused state cannot have any effect on
program behavior. We showed that this change can be made to have no effect on
the usage of Separation Logic, and we gave multiple examples of how it simplifies
reasoning about metatheoretical properties.

Determinism Constancy One related work that calls for comparison is the prop-
erty of “Determinism Constancy” presented by Raza and Gardner [12], which is
also a strengthening of locality. While they use a slightly different notion of ac-
tion than we do, it can be shown that Determinism Constancy, when translated
into our context (and ignoring divergence behaviors), is logically equivalent to:

oo[Clog A oo#o1 = ootor A (o0 - 01)[C] (0}, - 01)
For comparison, we repeat our Forwards Frame Property here:
oo[Clloy A oo#tar = op#o1 A (o0 - 01)[C] (0}, - 1)

While our strengthening of locality prevents programs from increasing state dur-
ing execution, Determinism Constancy prevents programs from decreasing state.
The authors use Determinism Constancy to prove the same property regarding
footprints that we proved in Section 5.1. Note that, while behavior preservation
does not imply Determinism Constancy, our concrete logic of Section 3 does have
the property since it never decreases state (we chose to have the free command
put the deallocated cell back onto the free list, rather than get rid of it entirely).

While Determinism Constancy is strong enough to prove the footprint prop-
erty, it does not provide behavior preservation — an execution on a small state
can still become invalid on a larger state. Thus it will not, for example, help in
resolving the dilemma of growing relations in the data refinement theory. Due
to the lack of behavior preservation, we do not expect the property to have a
significant impact on the metatheory as a whole. Note, however, that there does
not seem to be any harm in using both behavior preservation and Determin-
ism Constancy. The two properties together enforce that the area of memory
accessible to a program be constant throughout execution.

Module Reasoning Besides our discussion of data refinement in Section 5.2, there
has been some previous work on reasoning about modules and their implementa-
tions. In [11], a “Hypothetical Frame Rule” is used to allow modular reasoning
when a module’s implementation is hidden from the rest of the code. In [2],
a higher-order frame rule is used to allow reasoning in a higher-order language
with hidden module or function code. However, neither of these works discuss re-
lational reasoning between different modules. We are not aware of any relational
logic for reasoning about modules.
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Abstract. Thread management is an essential functionality in OS kernels. How-
ever, verification of thread management remains a challenge, due to two conflict-
ing requirements: on the one hand, a thread manager—operating below the thread
abstraction layer—should hide its implementation details and be verified indepen-
dently from the threads being managed; on the other hand, the thread management
code in many real-world systems is concurrent, which might be executed by the
threads being managed, so it seems inappropriate to abstract threads away in the
verification of thread managers. Previous approaches on kernel verification view
thread managers as sequential code, thus cannot be applied to thread manage-
ment in realistic kernels. In this paper, we propose a novel two-layer framework

to verify concurrent thread management. We choose a lower abstraction level
than the previous approaches, where we abstract away the context switch routine
only, and allow the rest of the thread management code to run concurrently in the
upper level. We also treat thread management data as abstract resources so that
threads in the environment can be specified in assertions and be reasoned about
in a proof system similar to concurrent separation logic.

1 Introduction

Thread scheduling in modern operating systems provides the functionality of virtualiz-
ing processors: when a thread is waiting for an event, it gives the control of the processor
to another thread to create the illusion that each thread has its own processor.

Inside a kernel, a thread manager supervises all threads in the system by manip-
ulating data structures called thread control blocks (TCBs). A TCB is used to record
important information about a thread, such as the machine context (or processor state),
the thread identifier, the status description, the location and size of the stack, the prior-
ity for scheduling, and the entry point of thread code. The TCBs are often implemented
using data structures such as queues for ready and waiting threads. Clearly, modifying
thread queues and TCBs would drastically change the behaviors of threads. Therefore,
a correct implementation of thread management is crucial for guaranteeing the whole
system safety. Unfortunately, modular verification of real-world thread management
code remains a big challenge today.

The challenge comes from two apparently conflicting goals which we want to achieve
at the same time: abstraction (for modular verification) and efficiency (for real-world
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usability). On the one hand, TCBs, thread queues, and the thrieadider are specifics

used to implement threads so they should sit at a lower abstraction layer. It is natural to
abstract them away from threads, and to verify threads and the thread scheduler sepa-
rately at different abstraction layers. Previous work has shown it is extremely difficult
to verify them together in one logic system[15]. On the other hand, in many real-world
systems such as Linux-2.6.10 [12] and FreeBSD-5.2 [13], the thread scheduler code
itself is alsoconcurrentin the sense that there may be multiple threads in the system
running the scheduler at the same time. For instance, when a thread invokes a thread
scheduler routineg(g.,cleaning up dead threads, load balancing, or thread scheduling)
and traverses the thread queue, it may be preempted by other threads who may call
the same routine and traverse the queue too. Also, in some sy$tefds [12,1] the thread
scheduling itself is implemented as a separate thread that runs concurrently with other
threads. In these cases, we need to verify thread schedulers in a “multi-threaded” logic,
taking threads into account instead of abstracting them away.

Earlier work on thread scheduling verification fails to achieve the two goals at the
same time. Néet al. [15] verified both the thread switch and the threads in one logic [14],
which treats thread return addresses as first-class code pointers. Although their method
may support concurrent thread schedulers in real systems, it loses the abstraction of
threads completely, and makes the logic and specifications too complex for practical
use. Recent work [3,6] adopts two-layer verification frameworks to verify concurrent
kernels. Kernel code is divided into two layers: sequential code in the lower layer and
concurrentin the upper layer. In their frameworks, they put the code manipulating TCBs
(e.g.thread schedulers) in the low layer, and hide the TCBs of threads in the upper layer
so that the threads cannot modify them. Then they use sequential program logics to
verify thread management code. However, this approach is not usable for many realistic
kernels where thread managers themselves are concurrent and the threads are allowed
to modify the TCBs. Other work on OS verification [I11,9] only supports non-reentrant
kernelsj.e.,there is only one thread running in the kernel at any time.

In this paper, we propose a more natural framework to verify concurrent thread man-
agers. Our framework follows the two-layer approach, so concurrent code at the upper
layer can be verified modularly with thread abstractions. However, the abstraction level
of our framework is much lower than previous framewoiKs|[3,6]. The majority of the
code manipulating thread queues and TCBs is put in the upper layer and can be veri-
fied as concurrent code. Our framework successfully achieves both verification goals: it
not only allows abstraction and modular verification, but also supports concurrency in
real-world thread management.

Our work is based on previous work on thread scheduler verification, but makes the
following new contributions:

— We introduce a fine-grained abstraction in our two-layer verification framework.
The abstraction protects only a small part of sensitive data in TCBs, and at the same
time allows multiple threads to modify other part of TCBs safely. Our division of
the two abstraction layers is consistent with many real systems. It is more natural
and can support more realistic thread managers than previous work.

— In the upper layer, we introduce the idea of treatingads as resource3 he ab-
stract thread resources can be specified explicitly in the assertion language, and
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their use by concurrent programs can be reasoned about modularly following con-
current separation logic (CSL) [16]. By enforcing the invariant that the abstract
resource is consistent with the concrete thread meta data, we can ensure the safety
of the accesses over TCBs and thread queues inside threads.

— Because of the fine-grained abstraction of our approach, the semantics of thread
scheduling do not have to be hardwired in the logic. Therefore, our framework
can be used to verify various implementation patterns of thread management. We
show how to verify the three common patterns of thread scheduling in realistic OS
kernels (while previous two-layer frameworkg[3,6] can only verify one of them).

— In our extended TR]7], we also use our framework to verify thread schedulers with
hardware interrupts, scheduling over multiprocessor with load-balancing, and a set
of other thread management routines such as thread creation, join and termination.

The rest of this paper is organized as follows: we first introduce a simplified abstract
machine model for the higher-layer of our framework in $éc. 3; to show our main idea,
we propose in Se€] 4 our proof system for concurrent thread scheduling code over the
abstract machine. We show how to verify two prototypes of schedulers based on context
switch in Sed b. We compare with related work in $éc. 6, and then conclude.

2 Challenges and our approach

In this section, we illustrate the challenges of verifying code of thread scheduling by
showing three patterns of schedulers and discuss the verification issues. Then we infor-
mally explain the basic ideas of our approach.

2.1 Three patterns of thread scheduling

By deciding which thread to run next, the thread scheduler is responsible for best uti-
lizing the system and makes multiple threads run concurrently. The scheduling process
consists of the following steps: selecting which thread to run next in a thread queue by
modifying TCBs, saving the context data of the current thread, and loading the con-
text data of the next thread. Context data is the state of the processor. By saving and
loading context data, the processor can run in multiple control floeusthreads. Usu-

ally, context data can be saved on stacks or TCBs (we assume in this paper that context
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data is saved in TCBs for the brevity of presentation). There are various ways to imple-
ment thread schedulers. In Fig. 1 we show three common implementation patterns, all
modeled from real systems.

Pattern (1) is popular among embedded OS kernelg.(FreeRTOS) and some
micro-kernels €.g.,Minix [B] and Exokernel[[2]). The scheduler in this pattern is in-
voked by function calls or interrupts. Thereafter, the scheduling is done in the following
steps: (1) saving the current context data, (2) finding the next thread, and (3) loading the
context data of the next thread (and switching to it implicitly through function return).

In pattern (Il), the scheduling process is a function with the following steps: (1)
finding the next thread firstly, (2) performing context switch (saving the current context
data, loading the next one, and jumping to the next thread immediately), (3) and running
the remaining code of the function when the control is switched back from other threads.
This patternis modeled from some mainstream monolithic kereeads|(inux [12], and
FreeBSD). Some embedded kernelgy(,RTEMS and uClinux) adopt it too. Note that
both the involved threads should be allowed to access the thread queue and TCBs when
calling the scheduler.

Pattern (Ill) uses a separate thread, cafieldeduler threadto do scheduling. One
thread may perform scheduling by doing context switch to the scheduler thread. The
scheduler thread is a big infinite loop: finding the next thread; performing context switch
to the next thread; and looping after return. This pattern can be seen in the GNU-pth
thread library, MIT-xv6 kernel, L4::Kagtc. Similar to pattern (I1), all involved threads
in this pattern should be allowed to access the TCB of the scheduler thread and the
thread queue.

2.2 Challenges

As we can see from the patterns in Hig. 1, the control flow in the scheduling process
is very complicated. Threads switch back and forth via manipulating the thread queues
and TCBs. Itis very natural to share TCBs and the thread queue among threads in order
to support all these scheduling patterns. On the other hand, it is important to ensure that
the TCBs are accessed in the right way. The system would go wrong if, for instance, a
thread erased the context data of another by mistake, or put a dead thread back into the
ready thread queue.

To guarantee the safety of the scheduling process, we must fulfill two requirements:

(1) No thread can incorrectly modify the context data in TCBs.
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ThreadA Threal B
{[A]« (B) xnext = -} [A] * (B) * next ~— B /* coming back */

next = B; » {[B] * (A) x next — B}
{[A] * (B) * next — B} next = A;
cswitch(A, next); cswitch(B, next);
([A * (B) » next s A} ( (A *[Blnext = A [T gAY dext s _)
,,7,@7,7,727,7,7,7,7,7,7
=74 GINV = {CThrda * RThrdg}

Fig. 3. Abstract thread res. vs. concrete thread res.

(2) The scheduler should know the status of each thread in the thread queues and decide
which to run next.

To satisfy the requirement (1), some previous work|[3,6] adopts a two-layer-based
approach and protects the TCBs throwdistraction where the TCBs are simply hid-
den from kernel threads and become inaccessible. This approach can be used to verify
schedulers of pattern (1), for which we show the abstraction line inig. 2 (a). Threads
above the line cannot modify TCBs, while the scheduler is below this line and has full
access to them. The lower-layer scheduler provides an abstract interface to the verifi-
cation of concurrent thread code at the upper layer. Since it modifies the TCBs in the
scheduling time only, we can view the scheduler as a sequential function which does not
belong to any thread and can be verified by a conventional Hoare-style logic. However,
this approach cannot verify the other two patterns, nor does it fulfill the requirement (2)
for concurrent schedulers, where the TCBs are manipulated concurrently (not sequen-
tially as in pattern (1)) and should be known by threads. That is, we cannot completely
hide the TCBs from the upper-layer concurrent threads for patterns (1) and (II).

2.3 Our approach

If we inspect the TCB data carefully, we can see that only a small part of the data is
crucial to thread behaviors and cannot be accessed concurrently. It is unnecessary to
access it concurrently either. The data includes the machine context data and the stack
location. We call thensafety-criticalvalues. Some values can be modified concurrently,

but their correctness is still important to the safety of the kemngl, the pointers orga-

nizing thread queues and the status field belong to this kind of values. Other values of
TCBs have nothing to do with the safety of the kernel and can be modified concurrently
definitely,e.g.,the name of a thread or debug information.

Lowering the abstraction levelTo protect the safety critical part of TCBs, we lower

the abstraction line, as shown in Fig. 2 (b). In our framework, the safety-critical data of
TCBs is under the abstraction line and hidden from threads. The corresponding oper-
ations such as context saving, loading and switching are abstracted away from threads
too, with only interfaces exposed to the upper layer. The other part of TCBs are lifted
above this line, which can be accessed by concurrent threads.

Building abstract threads.We still need to ensure the concurrent accesses of non-
safety-critical TCB data are correct. For instance, we cannot allow a dead thread to
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be put onto a ready thread queue. To address this issue, we bulitdcalisreads to
carry information of threads from TCBs to guide modifications by each other. IfJFig. 3,
we use the notatiofl] to specify the running thread, and the notation for a ready
thread. Here is the identifier of the thread. With the knowledge about the existence of
a ready threa® pointed bynext (i.e., (B)), we know it is safe to switch to it via the
operationcswitch(A,next). Since abstract threads can be described in specifications,
it allows us to write more intuitive and readable specifications for kernel code.

Treating abstract threads as resourcdske heap resources, abstract thread resources
can be either local or shared. We canadmership transfersn thread resources. When
context switches, one thread will transfer some of the abstract thread resources (shared)
along with the shared memory to the next thread. As shown ifTFig. 3, when thread A
context switches to thread B, the notatjghwill be changed tdA) after context saving;

(A) and(B) are transferred to the thread B along with the shared memory reseitce
then(B) will be changed tdB] after context loading. With transferred thread resources,
threadB will know there is a ready threalto switch to. Therefore, by treating abstract
threads as resources, we find a simple and natural way to specify and reason about
context switches. We design a proof system similar to CSL for modular verification
with the support of ownership transfers on thread resources.

Defining concrete thread resource®o establish the soundness of our proof system, we
must ensure that the abstract threads can be reified by concrete threads. The concrete
representation of abstract threads, including stack, T&€&scan be defined globally. In

Fig.[3, suppose that thread A is running, we ensure that there are two blocks of resources
in the system. One of them is the running threadrd, and the other is a ready thread
RThrdg. They correspond to the abstract threggJsand (B) in the assertions of thread

A. We use the concrete thread resources to specify the global invariant of the machine,
which allows us to prove the soundness of our proof system.

3 Machine model

In this section, we define a two-layer machine model. The physical machine we use is
similar to realistic hardware, where no concept of thread exists. Based on it, we define
an abstract machine with logicabstract threadswhose meta-data is abstracted into

a thread pool. Moreover, the operation of context switch is abstracted as a primitive
abstract instruction.

Physical machine The formal definition of the physical machine is shown in Eig. 4
(left side). A machine configuratioW consists of a code bloak, a memory blockv,

a register fileR and a program counter. The machine has 6 general registers. Some
common instructions are defined to write programs in this paper. Their meanings, as
well as the operational semantics, follow the conventions. For simplicity, we omit many
realistic hardware details,g., address alignment and bits-arithmetic.

Abstract machineThe abstract machine is shown in Higj. 4 (right side), where threads
are introduced at this level. It is more intuitive to build a proof system (Sec. 4) to verify
concurrent kernel code at this level. A thread ppas a partial mapping from thread
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(PhyMach) W := (C,M,R,pc) (AbsMach) W == (C,Spc)
(PhyCode) C = {f:i}* (State) S == (M,RP)
(PhyMem) M = {1:w}* (1=4n) (AbsCode) C = {f:ic}”
(PhyRegFile) R = {r:w}* (Mem) M {1iw}”
(Register) r = v0|a0|al|a2]|sp|ra (RegFile) R {row}
(Instruction) i = add ry, rs|addi ry, w (Tb) t = w
| mov ry, rs|movi ry, w (Pool) P = {t:T}"
| w ry, w(rs) | swrt, w(rs) (Thrd) T == run|(rdy,R)
| jmp £ | call £ | ret (Absinstr) ¢ = cswitch|i
| subi ry, w|bz ry, £ (TIDList) L = tuLnil

Fig. 4. Physical and abstract machine models

IDst to abstract threads. Each abstract thread has a tag specifying its status, which is
either running iun) or ready (dy). Each ready thread has a copy of saved register file

as its machine context data. The abstract instructions include an abstract operation of
context switch ¢switch) and other physical machine instructions defined on the left.
We model the operational semantics using the step transition reldtion W’ defined

in Fig.[3. The abstract instructieswitch requires two thread IDs passed as arguments

in a0 andai, one of which is tagged byun and the other is taged bgly in the thread

pool. Aftercswitch, the two abstract threads exchange tags, and the control of processor
is passed from the old thread to the new one. The registers of old thread are saved in the
source abstract thread and the registers in the destination thread are loaded into machine
state. Except foeswitch, the state transitions of other instructions are similar to those

of the physical machine.

Machine translation.In our proof system, once a program is proved safe at the abstract
machine level, it should be proved safe as well at the physical machine level. We define
a relation between abstract machine with physical machine (in the TR). The code
block at the abstract machine level is extended with the code of implementation of
context switch, and the abstract instructiegritch is translated to a call instruction that
invokes the implementation code of context switch. The memory block at the abstract
machine level is translated to physical memory block by being merged with the memory
where context data is stored. By the translation, it can be proved that any safe program
over the abstract machine is safe over the physical machine.

4 Proof system

In this section, we extend the assertion language of CSL to specify the thread resources,
and propose a small proof system supporting verification of concurrent code with mod-
ification of TCBs at the assembly level.
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((M,R.P),pc) < (M',R,P),pc)
if c = | then

i ((M,R),pc) < (M,R),pc’) A P=P

cswitch | IR’',P".M=M AR’'=R{ra:pc+1} At=R(a0)
At'=R(al) A pc’=R/(ra)

AP ={t:run, t': (rdy,R)}wP”

AP ={t: (rdy,R"), t':run}wP”

RandR is complete.

((M,R),pc) = (M',R),pc’)

if i = then

addry, rs | M=M AR =R{rq:R(rq)+R(rs)} A pc’=pc+1
call f M'=M AR =R{ra:pc+1} Apc'=¢f

jmp £ M'=MAR=RApc=f

ret M'=M A R =RA pc’=R(ra)

C(pc)=c (Spc) <> (S,pc))
(C,Spc)— (C,S,pc’)

Fig. 5.Operational semantics of abstract machine

4.1 Assertion language and code specification

We usep andq as assertion variables, which are predicates over machine states. The
assertion constructs, adapted from separation logic [17ktaakowly embeddeid the

meta language , as shown in HigJ. 6. In our assertion language, there are two special as-
sertion constructs for abstract threads. One of theft) Epecifying a ready thread and

the other ist] specifying a current running thread. Since threads are explicit resources
in the abstract machine, their machine context data (values in registers) are preserved
across context switch. Hence the resources of registers shouldn’t be shared. We ex-
plicitly mark a pure assertion by, which forbids an assertion specifying resources.

An unary notation {p) mark an assertiop that only specifies shared resources but

no thread local resources.., registers). Registers are also treated as resources, and
r — w specifies a register with the valuewfThe notationry,...,rn +— wi,...,wy IS @
compact form for multiple registers.

We borrow the idea from SCARI[4] and us€g) pair to specify instructions at
assembly-level. The pre-conditigndescribes the state before the first instruction of
an instruction sequence, while the actwpdescribes the actions done by the whole in-
struction sequence. In the proof system, each instruction is associated(with pair,
whereg describes the actions from this instruction to the end of the current function. For
all instructions ircC, their (p,g) pairs are put inw, a global mapping from labels to spec-
ifications. The specification forrfp,g) is different from the traditional pre-condition
and post-condition, which are both assertions and related by auxiliary variables. We can
still use a notation to specify instructions in the traditional style,
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true 2 A(M,RP). True

false 2 A(M,RP). False

emp 2 AMRP).M={}AR={}AP={}

pP*q £ )\(M,R,P).E|M1,M2,R1,R2,P1,P2.M:Ml&JMZ/\R=R1L+JR2/\P:P]_LHPZ
AP (M1,R1,P1) A g (M2, R, P2)

p—xq £ AM,RP).VYM1,Ry,P,M R P.(M=M;&yM AR=Ri&RA P =P, &P)
— p(Mg,Ry,P1) = q (M',R,P)

PAGQ £ AS.(PYA@QY

pvg = AS.(pSV (@9

Jv.p & AS.3v.pS

b 2 AMRP).pAM={}AR={}AP={}

op £ AM,RP).p(M,RP)AR={}

r—w 2 AMRP).R={r:w} AM={}AP={}

r—w = AMRP).IR.R={r:u}uR

1—=w 2 AMRP) .M={1:wlA1#NULLAR={}AP={1}

[t] £ AM,RP).P={t:runt At #NULLAM={}AR={}

) 2 AMRP).P={t:(rdy, )} At#NULLAM={} AR={}

Fig. 6. Definition of selected assertion constructs

ASS.VpP .VVvi,...,Vn. (P(Va,...,Vn) * P') S— (q(V1,...,Vn) * P') S)

wherep is the pre-condition of instructions,is the post-condition, and, ..., v, are
auxiliary variables occurring in the precondition and the postcondition. We define a
binary operator for composing two pairs into one.
(P.9>(P,g) = AS.pSA(VS.gS S~ 8),
AS S .pS—(3S.gSSAg S T))
If an instruction sequence satisfigsg) and the following instruction sequence satis-

fies (p',d), then the composed instruction sequence would satisty > (p',g'). The
weakening relation between two pairs is defined as below:

(p.g)=(P.g) £ VS.pS—» P SA(VS.gSS—~gS9)
i.e., the preconditiorp be stronger thap’ and the actiony be weaker thag'.

(Assert) p,q = true|false|emp|px*xq|p—*q|pAq|pVg|Iv.p|l—w
| 1) [gploplr—w|r —w

(Action) ¢ € State — State — Prop

(Spec) W = {f:(p,g)}"
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4.2 Invariant for shared resources and inference rules

As mertioned previously, our proof system draws ideas of ownership transfer from
CSL. By defining invariants for shared resources, our proof system ensures safe opera-
tions of TCBs.

Unlike the invariant in concurrent separation logic, the invariant of shared resources
defined in our proof system is parameterized by two thread IRsty). Briefly, the
invariant describes the shared resources before context switch with the direction from
the threads to ty. One of the benefits of parameters is that the invariant is thread-
specific.

Like the abstract invariantin CSL, the invariant(ts,tq) is abstract and can be in-
stantiated to concrete definitions to verify various programs, as long as the instantiation
satisfies the requirement of beiptecise[17].

Precisely, the invariantts, ty) describes the shared resources when the context switch
is invoked from the thread to the thready, but excluding the resources of the two
threads Since the control flow from one thread to anothedéserministicby context
switch, every two threads may negotiate a particular invariant that is different from pairs
of other threads. We can define different assertions (of shared resources) which depend
on the source and the destination threads of a context switch. This is quite different
from concurrent code at user-level, where a context switch is non-deterministic and the
scheduling algorithm is abstracted away.

The judgment for instructions in our proof system is of the following fown: -

{(p,9)} pc: c, whereWw andl are given as specifications. The judgement states that an
instruction sequence, started withat the label ofpc and ended with aet, satisfies
specification(p,g) under® and!l. Some selected inference rules for instructions are
shown in Fig[y.

In the rule of @DD), the premise says that the specificatipry) implies the action
of theadd instruction composed with the specification of the next instructigps+1).

The action ofadd instruction is that if the destination registgr contains the value of
wy, and the source registes contains the value of,,, then after the instructiory will
contain the sum ofi; andw,, while rs will remain unchanged.

Functions are reasoned with the rules @fa(L) and RET). The (CALL) rule
says that the specificatiqip,g) implies the action that is composed by (1) the action
of instructioncall, (2) the specification of theinctioninvokedw(£), (3) the action of
instructionret, and (4) the specification of the next instructi®pc+1). The RET)
rule says that the specificatidp, g) implies an empty action, which means the actions
of the current function should be fulfilled.

The most important rule iscsw) . The precondition otswitch requires the fol-
lowing resources: the current thread resource, the registecsntaining the current
thread IDt andat containing the destination thread tD and the shared resource sat-
isfying the invariant1(t,t"). After return from context switch, the current thread will
own the shared resources (satisfying”.t) for somet”) again.

4.3 Invariant of global resources and soundness

Each abstract thread corresponds to the part of global resources representing the con-
crete resources allocated for this thread. For example, for an abstract threhdre
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(wl,w2)
(rg — W1) % (rs — W2)
W(pc+1
(rg — WI1+W2) * (rs — W) >¥lpett)

W, +{(p,9)} pc:addry, s

(g@_${rakﬁ' }DW@)D{IaF&pC+1}Dw@C+Q

mwi{

(ADD)

ra — pc+1 ra s
W1+ {(p,g)} pc:call £ (CALL)

(Qg)i>{::p} (p,g) = W(£) -
P (RET) W I F{(p,9)} pc: jmp £

W +{(p,9)} pc:ret

[t] * (20,a1,7a s t,t,_) # (t') % ol (t,t') ) oot
.0) = S W(pet
(9 [t] * (a0,al,ra > t,t/, ) « Ft" . (") x ol (t",1) (pe-t1)

W, +{(p,9)} pc: cswitch

(csw)
Fig. 7. Inference rules (selected)

exist resources of its TCB, stack, and private resources. Therefore, all resources can be
divided into parts and each of them is associated to one thread. The global invariant
GINV, defined in Fig[B, describes the partition of all resources globally. The invariant

is the key for proving the soundness theorem of our proof system.

First, for each thread, we define a prediaadet to specify its resources and control
flow, i.e. thecontinuationof this thread. The first parameteof this predicate specifies
the number of functions nested in the thread’s control flowidfequal to zero, it means
that the thread is running in the topmost function, which is required to be an infinite loop
and cannot return. If the numbeis greater than zero, the predicate says that there is
a specificationp,g) in W atpc, such that the resources of the thread satigfiesrdg
guarantees that the thread will continue to satzfit recursively after it returns to the
addressetaddr.

The concrete resources ofinning threadare specified by a continuatiaant with
an additional condition, the running thread owns all registers. The parapagteints
to the next instruction the thread is going to run. Here we use an abbrevj&tido
denote the resources of all registers, except that the valiteignof no interest.

For aready threador a runnable thread), its concrete resources are defined by sep-
arating implication—: if given (1) the resources of saved machine contBxt (2) the
abstract resource of its€tf, (3) another ready threatland (4) shared resources speci-
fied byol(t',t), the resources of the ready thread can be transformed into the resources
of a running thread. Its thread ID is specified by the second paramerahaf, and
the third parameter is the machine context data saved in its TCB. Please note that the
program counter of a ready thread is saved into the register

The whole machine state can be partitioned, and each part is owned by one thread,
which is either running or ready. Thus, the global invariamtv is defined in the form
of separating conjunction bgThrd andRThrd. The structure oGINV is isomorphic to
the thread poob: the abstract running thread is mapped to the resource specified by
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[I>

[R]

(ra — _) * (vO — R(v0)) * (sp — R(sp))
* (a0 — R(a0)) * (a1l — R(al)) * (a2 — R(a2))
Cont(n+1,W,pc) 2 AS.W(pc)=(p,g) A (p 9
A(VS.g'S $— (Tretaddr. (ra — retaddr) A Cont(n, W, retaddr)) S)

Cont(0,W,pc) = AS.W(pc)=(p,g) A (P A (VS.gS S— False)

CThrd(W,t,pc) An.Cont(n,¥,pc) A ([t] *xIR. |R] * true)

RThrd(W,t,R) IR # [t] # 3. (t') % ol (t',t) —+CThrd(W,t,R(ra))

GINV(W,Ppc) = CThrd(W,t,pc) * RThrd(W,tg,Ro) * - -+ * RThrd(W,tn, Rn)
whereP={t :run, to: (rdy,Rp), ..., tn: (rdy,Rn)}

Fig. 8. Concrete threads and the global invariant

[I>

[I>

struct tcb { void schedule_p2()

struct context ctxt; {
struct tcb *prev; struct tcb *old, *new;
struct tcb *next; old = cur;

}; new = deq(&rq);

struct tcb *head; enq(&rq, old);
struct tcb *tail; cur = new;
};
struct tcb *cur;
struct queue rq;

cswitch(old,new);

|
|
|
|
|
struct queue { | if (new == NULL) return;
|
|
|
| return;
|

}

Fig. 9. Pseudo C code faschedule p2()

CThrd; an abstract ready thread is mapped to a resource specifiethhy Note that

GINV requires that there be one and only one running abstract thread, since the physical
machine has only one single processor. Our proof system ensures that the machine state
always satisfies the global invariansii{v(¥,P,pc) (M,R,P)).

The soundness property of our proof system states that any program that is well-
formed in our proof system will run safely on the abstract machine. The property can
be proved by the global invariagtnv, which always holds through machine execution.

We can first prove that if every machine configuration satisi®s, it can run forward

for one step. And we can also prove that if a machine configuration (satisbying

can proceed, the next machine configuration will also satisfy. Hence by the invari-
antGINv, the soundness theorem of our proof system can be proved. The proof of the
soundness theorem has been formalized in Coq [7].

5 \Verification cases

In this section, we show how to use the proof system to verify two schedulers of pat-
tern (11) and (IIl) shown in Fig[L. We give the code written in pseudo C to explain
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the programs and their specifications. The corresponding asgemid and selected
assertions of the two schedulers are shown in[Eip. 10.

Scheduler as functionThe scheduler functioschedule_p2() (see Fig[D) follows the
process discussed in Sdd. 2. The functiaeg() andenq() are used to remove and
insert nodes in thread queues. The main task of the scheduler is to choose a candidate
from the thread queue and then perform context switch from the current thread to the
candidate. There are two global variables; andrq. The variablecur points to the

TCB of the running thread:q points to the thread queue containing TCBs of all other
runnable (ready) threads.

The notatiort ™5 w specifies a named field in the structure. The notagion(t)
specifies a part of TCB including the fields ©fxt andprev. The predicat&Q(q,L)
specifies a doubly linked list as a thread queue pointed tp WhereL is a list of thread
IDs of the thread queue. We also usgas an abbreviation fatg) * (t1) * -+ * (tn), if L

iSto ity -+ ity i nil, and usa — (W _ to specifyn continuous memory cells.
field
15w £ +offset of the field in the struct> w

[I>

preb() =) ()

RQseg(pv,tl,t,nil)
RQseg(pv,tl,t,t’ 1 L")

[I>

t 7% py) « (t "X't') « RQseg(t,th,t', L)

[1>

(I
(Fa
(t " pv) 3t "X NULL) * 4(t=t])
(
(

head tail

RQ(g, nil) £ (g—>NULL) * (q— NULL)
RQ(q,t:: L) 2 Fpv.3t. (q"%) « (g2 1) + RQseg(py,tl,t, L)
K(bp,n,wg :wy i ... wm i nil) 2 Jsp.(sp — Sp)  f(sp=bp+4n) * (bp — (V)
*(SP> wp) * (SP+4 — w1) * -+ x (SP+4AM — W)
K(bp,n) £ K(bp,n, nil)

The specification ofchedule_p2() is shown below:

[t] # pteb(t) * (cur + t) * IL.RQ(xq,L) * (L) * (ra s ret) (tretbp)
xK(bp,20) x (v0,a0,a1 — _,_,_)

[t] * pteb(t) * (cur — t) * IL.RQ(rq,L) % (L) * (ra — ret)
xK(bp,20) x (v0,a0,a1 — _,_,_)

Here we use a notatiok(bp,n,w::w ::---) to describe a stack frame. The first parameter
bp is the base address of a stack frame. The second paramistdre size of unused
space (number of words). And the third parameter is a list of words, representing the
values on stack top down, that is, the leftmost value in the list is the topmost value in
the stack frame. If the stack frame is empty, we omit the third parameter.

The abstract invariantis instantiated to a concrete definition specifying the shared
resourcebeforeandafter context switch for this implementation of scheduler.

[(t,t") £ pteb(t’) * (cur — t') * IL.RQ(xq,t :: L) * (L)
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schedule_p2:
{[t] * pteb(t) * (cur — t) *IL.RQ(xq,L)

x(L) % (a0,al,v0,ra — _,_,_,ret)
xK(bp, 20) }
subi sp, 12
sw ra, 8(sp)
movi ao, cur
1w v0, 0(a0)
sw v0, 0(sp)

{[t] * pteb(t) * (cur — t) *IL.RQ(rq,L)
x(L) * (a0,a1,v0,ra > cur,_,t,_)
*K(bp,17,t :: _ zret::nil)}

movi a0, rq
call deq
bz vO, Ls_ret

{[t] * pteb(t) * (t') x pteb(t’) xIL.RQ(xrq,L)
*(L) * (a0,a1,v0,ra > rq,_,t’,_)
xK(bp,17,t :: _ :iret::nil) * (cur — t)}

sw v0, 4(sp)
1w al, 0(sp)
call enq

{[t] = {t') * pteb(t’) * IL.RQ(xq,t i1 L) * (L)
*(a0,al1,v0,ra +—» rq,t,0,_)
xK(bp,17,t i1t/ i ret:inil) * (cur — t)}

1w al, 4(sp)
movi a0, cur

sw al, 0(a0)
1w a0, 0(sp)

{[t] * (') *IL.RQ(zq,t :: L) * (L) * ptcb(t")
*(a0,a1,v0,ra > t,t’,0,_)
*K(bp,17,t ::t" i ret::nil)  (cur — t')}
cswitch
{[t] * pteb(t) «Ft”. ") *HL.RQ(xq,t” :: L)
*(L) * (a0,a1,v0,ra — t,t’, _, )
xK(bp,17,t :: _ :iret:inil) * (cur — t)}

Ls_ret:
1w ra, 8(sp)
addi sp, 12
{[t] * pteb(t) * (cur — t) *IL.RQ(xq,L)
x(L) % (a0,al,v0,ra — _,_,_,ret)
+K(bp,20)}
ret

schedth:

{[sched] * (cur — _) xFL.RQ(xq,L) x (L)
*(a0,a1,v0,ra > _,_,_,_)
*3bp.K(bp, 10) }

movi a0, rq

call deq

bz vO, schedth
movi a2, cur

sW v0, 0(a2)
mov al, vO

1w a0, sched

{[sched] x (t') * (cur > t’) x ptch(t)
*JIL.RQ(rq,L) * (L)
*(a0,a1,v0,ra — sched,t’,_,_)
*3bp.K(bp, 10) }
cswitch
{[sched] x3t” . (t") % ptcb(t”) * (cur — t")
*JL.RQ(rq,L) * (L) xFbp.K(bp,10)

*(a0,a1,v0,ra > sched,_,_,_)}
movi a0, rq
1w al, 0(a2)
call enq
jmp schedth

schedule_p3:
{[t] * ptcb(t) * (sched) * (cur — t)
x(a0,al,ra — _,_,ret) « K(bp,10)}

subi sp, 4

sw ra, 0(sp)
movi al, cur
1w a0, 0(al)
movi al, sched

{[t] * ptcb(t) * (sched) * (cur — t)
*(a0,al,ra — t,sched,ret) x K(bp,9,ret)}
cswitch
{[t] * ptcb(t) * (sched) * (cur > t)
x(a0,al,ra — _,_,ret) x K(bp,9,ret)}
1w ra, 0(sp)
addi sp, 4
{[t] * ptcb(t) * (sched) * (cur — t)
x(a0,al,ra — _,_,ret) « K(bp,10)}

ret

Fig. 10. Verification of schedule_p2 (), schedth() andschedule_p3()
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struct tcb sched; |  schedth()
struct tcb *cur; | o
struct queue rq; | while(1){
schedule_p3() | cur = deq(&rq);
{ | cswitch(&sched, cur);
| enq(&rq, cur);
|
|

}

cswitch(cur,&sched);
return;

} }

Fig. 11.Pseudo C code faschedule _p3()

Schedler as a separated threadA scheduler in the pattern (lll) is implemented as a
separated thread (see Higl 11), which does scheduling jobs in an infinite loop. A global
variablesched is added to represent the TCB of the scheduler thread. A stub function
schedule_p3() can be invoked by other threads to do scheduling. As shown below,
the pecification ofschedule_p3() function is different from the one afchedule p20).

The stedule function in this implementation doesn’t own the thread queue, which is
owned by the scheduler threédhed) instead since all of the operations over the thread
queue are putinto the separated thread.

[t] * ptcb(t) * (cur — t) * (sched) * (a0,al,ra — _,_,ret) « K(bp, 10) (t.bp.rey
[t] * ptcb(t) * (cur — t) * (sched) * (a0,al,ra — _,_,ret) « K(bp, 10)

The specification ofchedth () function is shown below:

[sched] * (cur — _) * IL.RQ(rq,L) * (L)
x(a0,al,a2,v0,ra — _,_,_,_,_) * Fbp.K(bp, 10)

false

Since the ready thread queue is only owned by the scheduler thread, it does not need to
be shared by other threads and occur in the invariant for the shared resources,

[(t,t") £ (4(t'=sched) * (cur — t) * ptch(t)) W (#(t=sched) * (cur ~ t’) * ptch(t’))

The invariantl (t,t") is defined by two cases on the direction of context switch: if the
destination thread is the scheduler thragdt’) requires that the value ikur be equal

to the ID of the source thread,or if the source thread is the scheduler thrdédt’)
requires that the value ikur be equal to the ID of the destination thread.

6 Related work and conclusions

Gotsman and Yan{ [6] proposed a two-layer framework to verify schedulers. The proof
system in the lower-layer is for verifying code manipulating TCBs, while the upper-
layer is for verifying the rest concurrent code of the kernel. Since thread queues and
TCBs are hidden from the upper-layer, one thread could not have any knowledge of the
others, thus their proof system is unable to verify the scheduling pattern of Il and IIl.
Similar to our assertioRThrd(---), they introduced a primitive predicaoceséG) to

192



relate TCBs in the lower-layer with threads in the upper-layertieere is no counter-
part of (t) in their framework.

Fenget al. also verified a kernel prototypg&][3] in a two-layer framework. Code
manipulating TCBs needs to be verified in the lower-layer of their framework. The
TCBs are connected with actual threads in the upper layer by an interpretation function
of their framework. Our use of global invariant is similar to their use of the interpretation
function. In the upper-layer, information of threads is completely hidden. Thus, their
framework also fails to support the verification of the scheduler pattern of Il and Il1.

Ni et al. verified a small thread manager with a logic systen[[15,14] supporting
modular reasoning about code including embedded code pointers. In their logic, how-
ever, there is no abstraction of threads. Multithreaded programs are seen as sequential
interleaving of pieces of code in low-level continuation passing style. Therefore, TCBs
with embedded code pointers can be treated as normal data. But since the reasoning
level is too low without any abstraction, TCBs have to be specified by over-complicated
logic expressions and then it is very difficult to apply their method to realistic code.

Klein et al. verified a micro-kernel, seL4 [11], where the kernel code runs sequen-
tially. Thus they used a sequential proof system to verify most of the kernel code. The
scheduling pattern of seL4 is similar to our pattern I, but they trusted the code doing
context saving and loading, and left it unverified. Since they do not verify user processes
upon the kernel, they need not relate TCBs in the kernel with actual user processes.

Gargancet al. used a framework CVM_|5] to build verified kernels in the Verisoft
project. CVM is a computational model for concurrent user processes, which interleave
through a micro-kernel. Starostin and Tsyban presented a formal approach [18] to rea-
son about context switch between user processes. The context switch code and proofs
are integrated in a framework for building verified kernels (CVM)I[10]. Their frame-
work keeps a global invariantyeak consistencyo relate TCBs in the kernel with user
processes outside the kernel. Since the kernel itself is sequential, their process schedul-
ing follows pattern I. The other two patterns cannot be verified.

In this paper, we proposed a novel approach to verify concurrent thread manage-
ment code, which allows multiple threads to modify their own thread control blocks.
The assertions of the code and inference rules of the proof system are straightforward
and easy to follow. Moreover, it can be easily extended to support other kernel features
(e.g., preemptive scheduling, multi-core systems, synchronizations) and to be practi-
cally applied to realistic OS code.
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Compositional Verification of a Baby Virtual Memory
Manager

Alexander Vaynberg and Zhong Shao

Yale University

Abstract. A virtual memory manager (VMM) is a part of an operating system
that provides the rest of the kernel with an abstract model of memory. Although
small in size, it involves complicated and interdependent invariants that make
monolithic verification of the VMM and the kernel running on top of it difficult.
In this paper, we make the observation that a VMM is constructed in layers: phys-
ical page allocation, page table drivers, address space API, etc., each layer pro-
viding an abstraction that the next layer utilizes. We use this layering to simplify
the verification of individual modules of VMM and then to link them together
by composing a series of small refinements. The compositional verification also
supports function calls from less abstract layers into more abstract ones, allow-
ing us to simplify the verification of initialization functions as well. To facilitate
such compositional verification, we develop a framework that assists in creation
of verification systems for each layer and refinements between the layers. Using
this framework, we have produced a certification of BabyVMM, a small VMM
designed for simplified hardware. The same proof also shows that a certified ker-
nel using BabyVMM’s virtual memory abstraction can be refined following a
similar sequence of refinements, and can then be safely linked with BabyVMM.
Both the verification framework and the entire certification of BabyVMM have
been mechanized in the Coq Proof Assistant.

1 Introduction

Software systems are complex feats of engineering. What makes them possible is the
ability to isolate and abstract modules of the system. In this paper, we consider an op-
erating system kernel that uses virtual memory. The majority of the kernel makes an
assumption that the memory is a large space with virtual addresses and a specific inter-
face that allows the kernel to request access to any particular page in this large space. In
reality, this entire model of memory is in the imagination of the programmer, supported
by a relatively small but important portion of the kernel called the virtual memory man-
ager. The job of the virtual memory manager is to handle all the complexities of the real
machine architecture to provide the primitives that the rest of the kernel can use. This
is exactly how the programmer would reason about this software system.

However, when we consider verification of such code, current approaches are mostly
monolithic in nature. Abstraction is generally limited to abstract data types, but such
abstraction can not capture changes in the semantics of computation. For example, it
is impossible to use abstract data types to make virtual memory appear to work like
physical memory without changing operational semantics. To create such abstraction, a
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change of computational model is required. In the Verisoft project[11, 18], the abstract
virtual memory is defined by creating the CVM model from VAMP architecture. In
AIM[7], multiple machines are used to define interrupts in the presence of a scheduler.

These transitions to more abstract models of computation tend to be quite rare,
and when present tend to be complex. The previously mentioned VAMP-CVM jump
in Verisoft abstracts most of kernel functionality in one step. In our opinion, it would
be better to have more abstract computation models, with smaller jumps in abstrac-
tion. First, it is easier to verify code in the most abstract computational model possible.
Second, smaller abstractions tend to be easier to prove and to maintain, while larger
abstractions can be still achieved by composing the smaller ones. Third, more abstrac-
tions means more modularity; changes in the internals of one module will not have
global effects.

However, we do not commonly see Hoare-logic verification that encourages multi-
ple models. The likely reason is that creating abstract models and linking across them
is seen as ad-hoc and tedious additional work. In this paper we show how to reduce
the effort required to define models and linking, so that code verification using multi-
ple abstractions becomes an effective approach. More precisely, our paper makes the
following contributions:

We present a framework for quickly defining multiple abstract computational mod-
els and their verification systems.

We show how our framework can be used to define safe cross-abstraction linking.
We show how to modularize a virtual memory manager and define abstract compu-
tational models for each layer of VMM.

We show a complete verification of a small proof-of-concept virtual memory man-
ager using the Coq Proof Assistant.

The rest of this paper is organized as follows. In Section 2, we give an informal
overview of our work. In Section 3, we discuss the formal details of our verification
and refinement framework. In Section 4, we specialize the framework for a simple C-
like language. In Section 5, we certify Baby VMM, our small virtual memory manager.
Section 6 discusses the Coq proof, and Section 7 presents related work and concludes.

2 Overview and Plan for Certification

We begin the overview by explaining the design of BabyVMM, our small virtual mem-
ory manager. First, consider the model of memory present in simplified hardware (left
side of Figure 1). The memory is a storage system, which contains cells that can be
read from or written to by the software. These cells are indexed by addresses. However,
to facilitate indirection, the hardware includes a system called address translation (AT),
which, when enabled, will cause all requests for specific addresses from the software
to be translated. The AT system adds special registers to the memory system - one to
enable or disable AT, and the other to point where the software-managed AT tables are
located in memory. The fact that these tables are stored in memory is one of the sources
of complexity in the AT system - updating AT tables requires updating in-memory ta-
bles, a process which goes through AT as well.
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Because AT is such a complicated, machine-dependent, and general mechanism,
BabyVMM creates an abstraction that defines specific restrictions on how AT will be
used, and presents a simpler view of AT to the kernel. Although the abstract models of
memory may differ depending on the features that the kernel may require, BabyVMM
defines a very basic model, to which we refer as the address space (AS) model of mem-
ory (right side of Figure 1). The AS model replaces the small physical memory with
a larger virtual address space with allocatable pages and no address translation. The
space is divided into high and low areas, where the low area is actually a window into
physical memory (a pattern common in many kernels). Because of this distinction, the
memory model has two sets of allocation functions, one for the “high” memory area
where the programmer requests a specific page for allocation, and one for the “low”
memory area, where the programmer can not pick which page to allocate.

However, creating an abstraction that makes the jump from the HW model directly
to AS model is complex. As a result, we create two more intermediate models, which
slowly build up the abstraction. The first model is ALE (left side of Figure 2), which
incorporates allocation information into the hardware memory, requiring that programs
only access memory locations that are marked allocated. The model adds primitives
in the form of mem_alloc and mem_free, with semantics same as the ones in the AS
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PD Model

model. Although this is not shown on the diagram, the ALE model still maintains the
hardware’s AT mechanism.

The second intermediate level, which we call PMAP (right side of Figure 2) is
designed to replace the hardware’s AT mechanism with an abstract one. The model
features a page map that exists outside the normal memory space, unlike the lower level
models. The page map maps virtual page numbers to physical page numbers, with a 0
value meaning invalid. In our particular design, the pagemap is always identity for the
lower addresses, creating a window into physical memory from within the virtual space.
The model still contains allocation primitives, and adds two more primitives, pt_set
and pt_lookup, which update and lookup values in the pagemap.

Using these abstract memory models, we can construct the BabyVMM verification
plan (Figure 3). The light-yellow boxes in the kernel represent the actual functions
(actual code is given in Appendix A of TR[19]). The darker green boxes represent
computational models with primitives labeled. The diagram shows how each module of
BabyVMM will be certified in the model best suited for it. For example, the high-level
kernel is certified in the AS model, meaning that it does not see underlying physical
memory at all. The implementation of as_request and as_release are defined over
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an abstract page map, and thus do not have to know how the hardware deals with page
tables, and so on. The plan also indicates which primitives are implemented by which
code (lines with circles). When we certify the code, these will be the cross-abstraction
links we will have to prove. Lastly, the plan also indicates the stubs in the initialization,
which are needed to certify calls from init to functions defined over higher abstraction.
The PE and PD models are restrictions on HW model, where AT is always on, and
always off respectively. ALD is an analogue of ALE, where AT is off.

On boot, the AT is off, and init is called. The init then calls mem_init to initialize
the allocation table and pt_init to initialize the page tables. Then, init uses the HW
primitives to enable AT, and jumps into the high-level kernel by calling kernel_init.

We will now focus on the technical details to put this plan in action.

3 Certifying with Refinement

Our framework for multi-machine certification is defined in two parts. First, we create
a machine-independent verification framework that will allow us to define quickly and
easily as many machines for verification as we need. Second, we will develop our notion
of refinements which will allow us to link all the separate machines together.
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3.1 A Machine-Independent Certification Framework

Our Hoare-logic based framework is parametric over the definition of operational se-
mantics of the machine, and is sound no matter what machine semantics it is param-
eterized with. To begin defining such a framework, we first need to understand what
exactly is a machine on which we can certify code. The definition that we use is given
in Figure 4. Our notion of the machine consists of the following parts:

State type (2). Define the set of all possible states in a machine.

Operations (4). This is a set of names of all operations that the machine supports.
The set can be infinite, and defined parametrically.

Conditionals (8). Defines a type of expressions that are used for branching.
Conditional Interpreter (1°). Converts conditionals into state predicates.

The operational semantics 0S. This is the main portion of the machine definition. It
is a set of actions (p,g) named by all operations in the machine.

The most important bit of information in the machine are the semantics (0S). The
semantics of operations are defined by a precondition (p), which shows when the op-
eration is safe to execute, and by a state relation (g) that defines the set of possible
states that the operation may result in. We will refer to the pair of (p,g) as an action
of the operation. Later we will also use actions to define the specification of programs.
Because the type of actions is somewhat complex, we define action combinators in Fig-
ure 5, including composition and branching. The same figure also shows the weaker
than relation between actions.

Although, at this point we have defined our machines, it does not have any notion of
computation. To make use of the machine, we will need to define a concept of programs,
as well as what it means for the particular program to execute.

The definition of the program is given in Figure 6. The most important definition
in that figure is that of the procedure, I. The procedure is a bit of program logic that
sequences together calls to the operations of a machine (¢), or to other procedures [1]
(loops are implemented as recursive calls). Procedures also include a way to branch on
a condition. The procedures can be given a name, and placed in the procedure heap C,
where they can be referenced from other procedures through the [1] constructor. The
procedure heap together with a program rest (the currently executing procedure) makes
up the program that can be executed.

The meaning of executing a program is given by the indexed denotational semantics
shown on the right side of Figure 6. The meaning of the program is an action that is
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constructed by sequencing operations. As programs can be infinite, the semantics are
indexed by the depth of procedure inclusion.

We use the static semantics (Figure 7) to approximate the action of a procedure.
These semantics are similar to the denotational semantics of the meta-language, except
that the specifications of called procedure are looked up in the table (¥). This means
that the static semantics works by the programmer approximating the actions of (speci-
fying) the program, and then making sure that the actual action of the program is within
the specifications. These well-formed procedures are then grouped into a well-formed
module using the copk rule, which forms the concept of a certified module M, L+ C: ¥,
where every procedure in C is well-formed under specification in ¥. The module also
defines a library (L) which is a set of specifications of stubs, i.e. procedures that are
used by the module, but are not in the module. These stubs can then be eliminated
by providing procedures that match the stubs (see Section 3.2). For a program to be
completely certified, all stubs must either be considered valid primitives or eliminated.

For a proof of partial correctness, please see the TR.

3.2 Linking

When we certify using modules, it will be very common that the module will require
stubs for the procedures of another module. Linking two modules together should re-
place the stubs in both modules for the actual procedures that are now present in the
linked code. The general way to accomplish this is by the following linking lemma:

Theorem 1 (Linking).

MLFC:Y) MLrC:¥y C1LC LiLY, L1¥ Ll
M (LIVL)\N(PLUP) FCIUC: 1 U,
where ¥ L % £ V1edom(?). (1¢don(¥) vV ¥ (1) = ¥(1)).

(LINK)

However, the above rule does not always apply immediately. When the two modules
are developed independently, it is possible that the stubs of one module are weaker than
the specifications of the procedures that will replace the stubs, which breaks the linking
lemma. To fix this, we strengthen the library.

Theorem 2 (Stub Strengthening).
If M,L+C: ¥, then for any £’ s.t. Y1 € dom(£). £(1) 2 £’ (1) and dom(L") Ndom(¥) = 0, the
following holds: M, L +C: ¥.

This theorem allows us to strengthen the stubs to match the specs of procedures, en-
abling the linking lemma. Of course, if the specs of the real procedures are not stronger
than the specs of the stubs, then the procedures do not correctly implement what the
module expects, and linking is not possible.

3.3 The Refinement Framework

Up to this point, we have only considered what happens to the code that is certified over
a single machine. However, the purpose of our framework is to facilitate multi-machine
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verification. For this purpose, we construct the refinement framework that will allow
us to refine certified modules in one machine to certified modules in another. The most
general notion of refinement in our framework can be defined by the following:

Definition 1 (Certified Refinement).

A certified refinement from machine My to machine Mc is a pair of relations (T¢,Ty) and a
predicate over the abstract certified module Acc, such that for all C4, ¥’ 4, ¥4, the following holds

MA, Y"A F CA : YIA ACC(MA, SU/A F CA : IPA)
Mc, Ty(¥P’ 4) F Te(Ca): Ty(¥a)

This definition is not a rule, but a template for other definitions. To define a refine-
ment, one has to provide the particular T, Ty, Acc together with the proof that the rule
holds. However, instead of trying to define these translations directly, we will automat-
ically generate them from the relations between the particular pairs of machines.

REFINE

Representation Refinement The only automatic refinement we will discuss in this
paper is the representation refinement. The representation refinement can be generated
for an abstract (M) and a concrete machine (M), where both use the same operations
and condtionals (e.g. My.4 = Mc.4 and My .8 = Mc.8) by defining a relation (repr :
My.2 — Mc.2 — Prop) between the states of the two machines. Using repr, we can
define our specification translation function:

Tac(p.g) 2 (ASc.3S4.repr So Sc Ap Sa,
’ ASc.AS'c.¥S4.repr Sp Sc > VS 4.8 S4 S'4 > repr S'4 S'¢)

This operation creates an concrete action from an abstract action. Informally it
works as follows. There must be at least one abstract state related to the starting con-
crete state for which the abstract action applies. The action starting from state S¢ results
in set containing S’¢, only if for all related abstract states for which the abstract action
is valid result in sets of abstract states that contain a state related to S’ ¢. Essentially, the
resulting concrete action is an intersection of all abstract actions that do not fail.

To make this approach work, we require several properties over the machines and
the repr. First, the refined semantics of abstraction operations have to be weaker than
the semantics of their concrete counterparts, e.g. Vg € Ma. Ta—c(Ma(ta)) 2 Mc(ta).

Second, the refinement must preserve the branch choice, e.g. if the refined program
chooses left branch, then abstract program had to choose the left branch in all states
related by repr as well. This property is ensured by requiring the following:

V¥b.VS,S . (ASc.repr(S,Sc) Arepr(S’,Sc)) = (M) S & M(b) S)

With these properties, we can define a valid refinement by the following lemma:

Lemma 1 (repr-refinement valid).
Given repr with proofs of the two properties above, the following is valid:

Mup, LarC: ¥y
Mc, Tp(La) FC: Ty (¥a)

where Tw(¥) := {Ts_c(¥(1)) | 1 € dom(?))
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This refinement is interesting in that it preserves the code of the program, and per-
forming point-wise refinement on specifications. Our actual work defines several other
refinement generators. One of these, code-preserving refinement, is included in the TR,
and is used as a stepping stone for proof of Lemma 1. Coq implementation features
more general versions of refinements presented, as well as several others.

4 Certifying C Code

Since BabyVMM is written in C, we define a formal specification of a tiny subset of
the C language using our framework. This C machine will be parameterized by the
specific semantics of the memory model, as our plan required. We will also utilize the
C machine to further speed up the creation of refinements.

4.1 The Semantics of C

To define our C machine in terms of our verification framework, we need to give it
a state type, a list of operations, and the semantics of those operations expressed as
actions. All of these are given in Figure 8.

The state of the C machine includes two components, the stack and the memory.
The stack is an abstract C stack that consists of a list of frames, which include call,
data, and return frames. In the current version, the stack is independent from memory
(one can think of it existing within a statically defined part of the loaded kernel). The
memory model is a parameter in the C machine, meaning that it can make use of any
memory model as long as it defines load and store operations. The syntax of the C
machine is different from the usual definition, in that it relies on the meta-machine for
its control 